Parietal Epithelial Cells (PECs) activation and proliferation are common to several distinct forms of glomerulopathies. Due to several stimuli, PECs can change to a progenitor (CD24 and CD133/2) or a pro-sclerotic (CD44) phenotype. In addition, PECs, which are constantly exposed to filtered albumin, are known to be involved in albumin internalization, but how this mechanism occurs is unknown. We hypothesized that PECs can transport albumin via receptor-mediated endocytosis and that albumin overload may affect the state of PECs. Conditionally immortalized human PECs (hPECs) were incubated with different albumin concentrations at different times. Albumin internalization studies were performed. Protein expression was assessed using In-Cell Western and immunofluorescence. Cell morphology was analyzed by phase-contrast microscopy and F-actin staining. We demonstrate that hPECs internalize albumin via receptor-mediated mechanisms. Under albumin stimulation, megalin, cubilin, ClC-5, CD133/2, CD24, and CD44 were upregulated. The increase of pERK1/2, the upregulation of ROCK1, ROCK2, caspase -3, -6, and -7, and the morphological changes associated with loss of F-actin fibers indicated that inflammation, proliferation and apoptosis mechanisms had been activated. Our results demonstrate that long-term exposure to high doses of albumin induces up-regulation of molecules involved in the tubular protein uptake machinery and suggest that albumin overload is able to trigger a regenerative process as well as an activation state which might lead in vivo to glomerular crescent formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41598-024-84972-2 | DOI Listing |
Sci Rep
January 2025
Kidney Histomorphology and Molecular Biology Laboratory, Nephrology Unit, Department of Medicine - DIMED, University of Padua, Via Giustiniani 2, 35128, Padua, Italy.
Parietal Epithelial Cells (PECs) activation and proliferation are common to several distinct forms of glomerulopathies. Due to several stimuli, PECs can change to a progenitor (CD24 and CD133/2) or a pro-sclerotic (CD44) phenotype. In addition, PECs, which are constantly exposed to filtered albumin, are known to be involved in albumin internalization, but how this mechanism occurs is unknown.
View Article and Find Full Text PDFLife (Basel)
December 2024
Clinics of Neonatology, Gazi Yaşargil Training and Research Hospital, 21090 Diyarbakır, Turkey.
Postoperative fluid overload is associated with increased mortality and morbidity in infants with congenital heart disease (CHD). Loop diuretics, such as furosemide, are commonly used to prevent fluid overload in the postoperative period. This study aimed to investigate the effect of postoperative albumin levels on the efficacy of furosemide after surgery in infants with CHD.
View Article and Find Full Text PDFIntroduction The pediatric intensive care unit (PICU) is a specialized area for treating critically ill infants and children. However, some of these children may experience poor outcomes, including death. However, it is necessary to predict the prognosis for critically ill patients as early as possible to commence triage as well as an early and effective intervention to prevent mortality.
View Article and Find Full Text PDFJ Intern Med
December 2024
Fresenius Medical Care, Global Medical Office, Bad Homburg, Germany.
Background: Fluid overload remains critical in managing patients with end-stage kidney disease. However, there is limited empirical understanding of fluid overload's impact on mortality. This study analyzes fluid overload trajectories and their association with mortality in hemodialysis patients.
View Article and Find Full Text PDFExcessive water consumption from liquid or reconstituted oral nutrition supplements may increase risk of fluid overload in renal patients. Nutri-jelly, a ready-to-eat texture-modified diet with 52.8% water, some protein, low potassium, phosphorus, and sodium, could be an alternative.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!