Drought is a significant environmental stressor that induces changes in the physiological, morphological, biochemical, and molecular traits of plants, ultimately resulting in reduced plant growth and crop productivity. Seaweed extracts are thought to be effective in mitigating the effects of drought stress on plants. In this study, we investigated the impact of crude extract (CE), and polysaccharides (PS) derived from the brown macroalgae Fucus spiralis (Heterokontophyta, Phaeophyceae) applied at 5% (v/v) and 0.1% (w/v) respectively on radish plants Raphanus sativus L. subjected to varying levels of drought stress, specifically 80% of field capacity (FC) for no stress, 60% FC for moderate stress, and 40% FC for severe stress. Our examination of growth parameters, along with physiological and biochemical characteristics, revealed that both CE and PS increased the fresh weight over the control by 47.43% and 64% at 40% FC and 12.5% and 38% at 60% FC respectively. Under stress (40% FC), the application of CE and PS decreased proline content of radish leaves by 23.45% and 6.46% respectively in comparison with the control. Furthermore, PS treatment caused an increase of the alkaline phosphatase and urease activity in the soil by 182.5% and 34.6% respectively. CE and PS treatments led to decreased sugar content and total phenolics levels. Notably, lipid peroxidation was reduced in stressed plants treated with both CE and PS, with PS treatment yielding lower concentrations (3.75 nmol MDA.g FW at 40% FC). Overall, F. spiralis extracts interacted through several mechanisms using various compounds to mitigate the negative effects of drought stress on radish plants. These results demonstrate that seaweed extracts could be adopted in integrated production systems to boost food productivity under harsh climatic conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727402 | PMC |
http://dx.doi.org/10.1186/s12870-024-06023-2 | DOI Listing |
J Insect Sci
January 2025
Department of Agricultural Sciences and Engineering, College of Agriculture, Tennessee State University, Otis L. Floyd Nursery Research Center, McMinnville, TN, USA.
The role of flood and drought stress on Xylosandrus ambrosia beetle attacks and colonization in nursery trees with varying levels of water stress tolerance has not yet been studied. This study aimed to examine ambrosia beetle preference for tree species varying in their tolerance to water stress. Container-grown dogwoods, redbuds, and red maples were exposed to flood, drought, or sufficient water treatments for 28 d and beetle attacks were counted every third day.
View Article and Find Full Text PDFAnn Bot
January 2025
Institute of Botany, Czech Academy of Sciences, Dukelská 135, 379 01 Třeboň, Czech Republic.
Background And Aims: Understanding interspecific differences in plant growth rates and their internal and external drivers is key to predicting species responses to ongoing environmental changes. Annual growth rates vary among plants based on their ecological preferences, growth forms, ecophysiological adaptations, and evolutionary history. However, the relative importance of these factors remains unclear, particularly in high-mountain ecosystems experiencing rapid changes.
View Article and Find Full Text PDFFront Plant Sci
January 2025
School of Life Sciences, East China Normal University, Shanghai, China.
Frequent and extreme drought exerts profound effects on vegetation growth and production worldwide. It is imperative to identify key genes that regulate plant drought resistance and to investigate their underlying mechanisms of action. Long-chain fatty acids and their derivatives have been demonstrated to participate in various stages of plant growth and stress resistance; however, the effects of medium-chain fatty acids on related functions have not been thoroughly studied.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Department of Plant Biology, University of Szeged, Közép fasor 52., H6726 Szeged, Hungary.
The beneficial effects of priming technology are aimed at the promotion of growth and development and stress tolerance in plants. Different seed pre-treatment and vegetative priming approaches (osmo-, chemical, physical, hormonal, redox treatments) increase the level of nitric oxide (NO) being an active contributor to growth regulation and defence responses. On the other hand, seed pre-treatment or vegetative priming mainly with the NO donor, sodium nitroprusside (SNP) helps to mitigate different abiotic stresses like salinity, cold, drought, excess metals.
View Article and Find Full Text PDFPlant J
January 2025
Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
Spider silk, especially dragline silk from golden silk spiders (Trichonephila clavipes), is an excellent natural material with remarkable mechanical properties. Many studies have focused on the use of plants as biofactories for the production of recombinant spider silk. However, the effects of this material on the mechanical properties or physiology of transgenic plants remain poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!