The accurate and reliable quantification of the levels of disease markers in human sweat is of significance for health monitoring through wearable sensing technology, but the sensors performed in real sweat always suffer from biofouling that cause performance degradation or even malfunction. We herein developed a wearable antifouling electrochemical sensor based on a novel multifunctional hydrogel for the detection of targets in sweat. The integration of polyethylene glycol (PEG) into the sulfobetaine methacrylate (SBMA) hydrogel results in a robust network structure characterized by abundant hydrophilic groups on its surface, significantly enhancing the PEG-SBMA hydrogel's antifouling and mechanical properties. The wearable sweat sensor is specifically designed for ascorbic acid (AA) detection. The incorporation of a silver nanoparticles-molybdenum disulfide (AgNPs-MoS) composite material into the hydrogel significantly enhances its catalytic properties towards AA. Electrochemical analysis confirms that the sensor reliably detects AA in real sweat with minimal interference from other components and bacteria, demonstrating its practical application potential. Furthermore, this multifunctional hydrogel's mechanical robustness and strong adhesion to various substrates ensure its practical applicability in wearable devices. This technology provides a foundation for accurate health monitoring in wearable sensors, enabling advanced, non-invasive diagnostic tools for personalized healthcare.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2024.343548 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!