Wild-caught fish are an important subsistence food source in remote northern regions, but they can also be a source of exposure to mercury (Hg), which has known health hazards. We investigated factors and mechanisms that control variability of Hg concentrations in Lake Whitefish (Coregonus clupeaformis) among remote subarctic lakes in Northwest Territories, Canada. Integrating variables that reflect fish ecology, in-lake conditions, and catchment attributes, we aimed to not only determine factors that best explain among-lake variability of fish Hg, but also to provide a whole-ecosystem understanding of interactions that drive among-lake variability of fish Hg. Size-standardized concentrations of total Hg ([THg]) in Lake Whitefish varied threefold (0.05-0.15 mg/kg wet weight) and differed significantly among the twelve study lakes. Stepwise multiple regressions revealed that 84% of among-lake variability in size-standardized fish [THg] was explained by positive relationships with two variables, catchment to lake area ratios (CA:LA) and methyl Hg concentrations ([MeHg]) in benthic invertebrates. Piecewise structural equation modeling indicated that [MeHg] in benthic invertebrates were positively related to [THg] in sediment and [MeHg] in water, which in turn were both positively related to concentrations of dissolved organic carbon (DOC) in water. Fish [THg] and all proximate in-lake drivers were ultimately driven by catchment attributes and were higher in lakes within lower-elevation, relatively larger, proportionally more forested catchments. Revealing interactive processes that influence fish Hg levels, our findings improve the current knowledge about causes of Hg variability among subarctic lakes and highlight factors that can help guide future work.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2025.144078 | DOI Listing |
Chemosphere
January 2025
Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada. Electronic address:
Wild-caught fish are an important subsistence food source in remote northern regions, but they can also be a source of exposure to mercury (Hg), which has known health hazards. We investigated factors and mechanisms that control variability of Hg concentrations in Lake Whitefish (Coregonus clupeaformis) among remote subarctic lakes in Northwest Territories, Canada. Integrating variables that reflect fish ecology, in-lake conditions, and catchment attributes, we aimed to not only determine factors that best explain among-lake variability of fish Hg, but also to provide a whole-ecosystem understanding of interactions that drive among-lake variability of fish Hg.
View Article and Find Full Text PDFJ Environ Manage
November 2024
Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China; International Research Center of Big Data for Sustainable Development Goals, Beijing, 100094, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
Water colour has been recognized as one of the most important Essential Climate Variables of the lake ecosystem, as it is directly related to changes in water constituents and almost all of the lake's ecological changes could alter water colour. Given the high retrieval accuracy from existing Earth observation satellite data, water colour, in terms of Forel Ule Index (FUI), can be a realistic indicator to track the long-term changes in the lake ecosystem and further explore the lake response to environmental changes. This paper aims to comprehensively investigate the spatiotemporal variation patterns of FUI in 159 large lakes (≥25 km) across China during 2000-2022 based on the MODIS data and detect the climatic and anthropogenic driving forces of these changes.
View Article and Find Full Text PDFEnviron Res
January 2023
Department of Biology, University of Waterloo, Waterloo, ON, Canada.
Biomagnification of mercury (Hg) through lake food webs is understudied in rapidly changing northern regions, where wild-caught subsistence fish are critical to food security. We investigated estimates and among-lake variability of Hg biomagnification rates (BMR), relationships between Hg BMR and Hg levels in subsistence fish, and environmental drivers of Hg BMR in ten remote subarctic lakes in Northwest Territories, Canada. Lake-specific linear regressions between Hg concentrations (total Hg ([THg]) in fish and methyl Hg ([MeHg]) in primary consumers) and baseline-adjusted δN ratios were significant (p < 0.
View Article and Find Full Text PDFSci Total Environ
May 2022
Department of Biology, University of Waterloo, Waterloo, ON, Canada; Water Institute, University of Waterloo, Waterloo, ON, Canada.
J Exp Biol
April 2021
Department of Biology, University of Massachusetts, Amherst, MA 01003, USA.
Animals display remarkable diversity in rest and activity patterns that are regulated by endogenous foraging strategies, social behaviors and predator avoidance. Alteration in the circadian timing of activity or the duration of rest-wake cycles provide a central mechanism for animals to exploit novel niches. The diversity of the >3000 cichlid species throughout the world provides a unique opportunity to examine variation in locomotor activity and rest.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!