Wild-caught fish are an important subsistence food source in remote northern regions, but they can also be a source of exposure to mercury (Hg), which has known health hazards. We investigated factors and mechanisms that control variability of Hg concentrations in Lake Whitefish (Coregonus clupeaformis) among remote subarctic lakes in Northwest Territories, Canada. Integrating variables that reflect fish ecology, in-lake conditions, and catchment attributes, we aimed to not only determine factors that best explain among-lake variability of fish Hg, but also to provide a whole-ecosystem understanding of interactions that drive among-lake variability of fish Hg. Size-standardized concentrations of total Hg ([THg]) in Lake Whitefish varied threefold (0.05-0.15 mg/kg wet weight) and differed significantly among the twelve study lakes. Stepwise multiple regressions revealed that 84% of among-lake variability in size-standardized fish [THg] was explained by positive relationships with two variables, catchment to lake area ratios (CA:LA) and methyl Hg concentrations ([MeHg]) in benthic invertebrates. Piecewise structural equation modeling indicated that [MeHg] in benthic invertebrates were positively related to [THg] in sediment and [MeHg] in water, which in turn were both positively related to concentrations of dissolved organic carbon (DOC) in water. Fish [THg] and all proximate in-lake drivers were ultimately driven by catchment attributes and were higher in lakes within lower-elevation, relatively larger, proportionally more forested catchments. Revealing interactive processes that influence fish Hg levels, our findings improve the current knowledge about causes of Hg variability among subarctic lakes and highlight factors that can help guide future work.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2025.144078DOI Listing

Publication Analysis

Top Keywords

among-lake variability
16
factors mechanisms
8
fish
8
lake whitefish
8
subarctic lakes
8
catchment attributes
8
variability fish
8
fish [thg]
8
[mehg] benthic
8
benthic invertebrates
8

Similar Publications

Wild-caught fish are an important subsistence food source in remote northern regions, but they can also be a source of exposure to mercury (Hg), which has known health hazards. We investigated factors and mechanisms that control variability of Hg concentrations in Lake Whitefish (Coregonus clupeaformis) among remote subarctic lakes in Northwest Territories, Canada. Integrating variables that reflect fish ecology, in-lake conditions, and catchment attributes, we aimed to not only determine factors that best explain among-lake variability of fish Hg, but also to provide a whole-ecosystem understanding of interactions that drive among-lake variability of fish Hg.

View Article and Find Full Text PDF

Earth observation reveals the shifting patterns of China's lake colour driven by climate change and land cover.

J Environ Manage

November 2024

Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China; International Research Center of Big Data for Sustainable Development Goals, Beijing, 100094, China; University of Chinese Academy of Sciences, Beijing, 100049, China.

Water colour has been recognized as one of the most important Essential Climate Variables of the lake ecosystem, as it is directly related to changes in water constituents and almost all of the lake's ecological changes could alter water colour. Given the high retrieval accuracy from existing Earth observation satellite data, water colour, in terms of Forel Ule Index (FUI), can be a realistic indicator to track the long-term changes in the lake ecosystem and further explore the lake response to environmental changes. This paper aims to comprehensively investigate the spatiotemporal variation patterns of FUI in 159 large lakes (≥25 km) across China during 2000-2022 based on the MODIS data and detect the climatic and anthropogenic driving forces of these changes.

View Article and Find Full Text PDF

Biomagnification of mercury (Hg) through lake food webs is understudied in rapidly changing northern regions, where wild-caught subsistence fish are critical to food security. We investigated estimates and among-lake variability of Hg biomagnification rates (BMR), relationships between Hg BMR and Hg levels in subsistence fish, and environmental drivers of Hg BMR in ten remote subarctic lakes in Northwest Territories, Canada. Lake-specific linear regressions between Hg concentrations (total Hg ([THg]) in fish and methyl Hg ([MeHg]) in primary consumers) and baseline-adjusted δN ratios were significant (p < 0.

View Article and Find Full Text PDF
Article Synopsis
  • Mercury levels in fish are impacted by complex interactions within ecosystems, particularly in northern regions where environmental changes are significant.
  • Research focused on eleven subarctic lakes in Canada revealed that the growth rates of Northern Pike and the amount of methyl mercury in bottom-dwelling invertebrates strongly influence mercury concentrations in the fish.
  • Findings suggest that larger catchments with more temperate/subpolar forests can lead to higher mercury levels in Northern Pike, providing a framework for monitoring fish mercury levels in these vulnerable subarctic ecosystems.
View Article and Find Full Text PDF

Animals display remarkable diversity in rest and activity patterns that are regulated by endogenous foraging strategies, social behaviors and predator avoidance. Alteration in the circadian timing of activity or the duration of rest-wake cycles provide a central mechanism for animals to exploit novel niches. The diversity of the >3000 cichlid species throughout the world provides a unique opportunity to examine variation in locomotor activity and rest.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!