Efficient Degradation of Ciprofloxacin in Water Using nZVI/g-CN Enhanced Dielectric Barrier Discharge Plasma Process.

Environ Res

Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China. Electronic address:

Published: January 2025

Residual antibiotics in aquatic environments pose health and ecological risks due to their persistence and resistance to biodegradation. Thus, it is crucial to develop efficient technologies for the degradation of such antibiotics. This study presents a novel approach using a nano zero-valent iron/graphitic carbon nitride (nZVI/g-CN)-enhanced dielectric barrier discharge (DBD) plasma process for the degradation of ciprofloxacin (CIP). The combination of nZVI and g-CN with DBD plasma significantly enhances CIP degradation efficiency, achieving an apparent first-order kinetic constant of 0.2849 min⁻ at an input voltage of 12 kV, which is 5.22 times higher than standalone DBD treatment and 10.59 times higher than the ozonation treatment. The morphology, elemental valence states, and other properties of nZVI/g-CN have been thoroughly characterized and demonstrate good reusability. Reactive species such as ·OH dominates CIP degradation. The Fe atoms in nZVI/g-CN exhibit a strong tendency to donate electrons, generating reactive oxygen through the dissociation of adsorbed water. The cleavage of C-F bonds, hydroxylation and ring-opening oxidation of the piperazine group are the main pathways for CIP degradation, which helps to reduce biotoxicity after treatment. Overall, this study provides insights into the mechanism of reactive species in a DBD-nZVI/g-CN system, a system that has the potential to become an efficient and environmentally friendly solution for the treatment of antibiotic wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2025.120833DOI Listing

Publication Analysis

Top Keywords

cip degradation
12
degradation ciprofloxacin
8
dielectric barrier
8
barrier discharge
8
plasma process
8
dbd plasma
8
times higher
8
reactive species
8
degradation
5
efficient degradation
4

Similar Publications

Efficient Degradation of Ciprofloxacin in Water Using nZVI/g-CN Enhanced Dielectric Barrier Discharge Plasma Process.

Environ Res

January 2025

Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China. Electronic address:

Residual antibiotics in aquatic environments pose health and ecological risks due to their persistence and resistance to biodegradation. Thus, it is crucial to develop efficient technologies for the degradation of such antibiotics. This study presents a novel approach using a nano zero-valent iron/graphitic carbon nitride (nZVI/g-CN)-enhanced dielectric barrier discharge (DBD) plasma process for the degradation of ciprofloxacin (CIP).

View Article and Find Full Text PDF

Herein, a biochar-supported zero-valent iron (ZVI) nanosheet catalyst (Fe@BC) for the activation of persulfate to degrade ciprofloxacin (CIP) was prepared using industrial kraft lignin and Fenton sludge as carbon and iron sources, respectively. Fe@BC showed considerably better CIP degradation efficiency (96.9% at 20 mg L) than traditional catalysts.

View Article and Find Full Text PDF

Optogenetic systems using photosensitive proteins and chemically induced dimerization/proximity (CID/CIP) approaches enabled by chemical dimerizers (also termed molecular glues), are powerful tools to elucidate the dynamics of biological systems and to dissect complex biological regulatory networks. Here, we report a versatile chemo-optogenetic system using modular, photoswitchable molecular glues (sMGs) that can undergo repeated cycles of optical control to switch protein function on and off. We use molecular dynamics (MD) simulations to rationally design the sMGs and further expand their scope by incorporating different photoswitches, resulting in sMGs with customizable properties.

View Article and Find Full Text PDF

With the growing threat of organic pollutants in water bodies, there is an urgent need for sustainable and efficient water decontamination methods. This research focused on synthesizing a novel Z-scheme ternary heterostructure composed of graphene oxide (GO)-mediated polyaniline (PANI) with α-FeO and investigated its potential in brilliant green (BrG) and ciprofloxacin (CIP) degradation tests under visible light. The ternary composite demonstrated exceptional photocatalytic activity, with the optimized 10%PANI/GO/α-FeO (10PGF) photocatalyst achieving 99.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the degradation of ciprofloxacin (CIP) using a photocatalyst made from CoFeO@3D-TiO and graphene aerogel, achieving complete removal under specific conditions within 60 minutes while showing high reusability.
  • Intermediate products from the degradation process were found to be non-toxic to E. coli, and total organic carbon (TOC) analysis showed 86% mineralization of CIP, indicating successful transformation of non-biological sewage to biodegradable effluent.
  • The research emphasizes the effectiveness of photocatalysis over simple adsorption with a significantly faster reaction rate, showcasing the potential environmental benefits of using the synthesized photocatalyst under visible light.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!