Measurements of changes in fluorescence signal is one of the most commonly applied methods for studying protein-ligand affinities. These measurements are generally carried out using cuvettes in spectrofluorometers, which can only measure one sample at a time. This makes screening procedures for multiple ligands and proteins extremely laborious, as each protein must be measured with multiple ligand concentrations, and usually in triplicate. Moreover, multiple equations exist to extract the affinity constants and other information from the data, and their underlying assumptions are often disregarded. In this study, the affinities of human, bovine and rat serum albumins for the mycotoxin zearalenone and five of its common derivatives were measured in 96-well microplates, allowing quick measurements of multiple samples using less reagent amounts. In comparison to measurements using a cuvette in a spectrofluorometer, the microplate method was shown to reproduce the affinity constants accurately. The results were discussed in terms of common pitfalls regarding experimental setup and available equations to analyze protein-ligand binding in fluorescence quenching assays. The commonly used Stern-Volmer equation was discussed in detail and the results used to show how inaccurate it is when a fluorescent protein-ligand complex is formed, and when other underlying approximations are ignored.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ymeth.2024.12.011 | DOI Listing |
Biochemistry (Mosc)
December 2024
Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
The current work presents comparative assessment of affinity of the designed DNA aptamers for extracellular domain of the human epidermal growth factor receptor (EGFR*). The affinity data of the 20 previously published aptamers are summarized. Diversity of the aptamer selection methods and techniques requires unification of the comparison algorithms, which is also necessary for designing aptamers used in the post-selection fitting to the target EGFR* protein.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Afsin Vocational School, Department of Chemistry and Chemical Processing Technologies, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey. Electronic address:
This study investigated the binding mechanism of taxifolin (TA), daidzein (DA), and S-equol (SQ) flavonoids with fish sperm double helix DNA (dsDNA) under the simulated physiological pH condition using UV-Vis and photoluminescence spectroscopy, as well as viscometric methods. Binding constants (K) for the flavonoids to dsDNA were determined as 1.8 × 10 M for SQ, 1.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
January 2025
Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Urumqi 830017, Xinjiang, China.
To screen and identify a chitosanase with high stability, we cloned the chitosanase gene from with a high protease yield from the barren saline-alkali soil and expressed this gene in . The expressed chitosanase of . (BA-CSN) was purified by nickel-affinity column chromatography.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa. Electronic address:
Sepsis, a life-threatening disruption, remains a significant global healthcare challenge that urgently needs novel strategies to improve management. This study aimed to develop multifunctional vancomycin-loaded polymersomes (VCM-HA-SIL-Ps) using a novel hyaluronic acid-silybin (HA-SIL) conjugate to target the TLR inflammatory pathway and enhance VCM's efficacy against bacterial sepsis. HA-SIL was synthesized and characterized by FT-IR, UV-Vis spectroscopy, and H NMR.
View Article and Find Full Text PDFBioorg Chem
January 2025
Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia. Electronic address:
Multi-drug-resistant (MDR) pathogens represent a critical global health threat, necessitating the development of novel antimicrobial agents with broad-spectrum activity and minimal toxicity. This study investigates the antimicrobial and anti-biofilm properties of 4-Allyl-2-methoxyphenol (eugenol, EU) and (E)-3-Phenylprop-2-enal (cinnamaldehyde, CN) against 19 clinically significant pathogens through a combination of in-vitro assays and in-silico analyses. EU displayed remarkable activity, particularly against Aspergillus niger (20.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!