Seizures can lead to cardiac dysfunction. Multiple pathways contribute to this phenomenon, of which the chaperone sigma-1 receptor (S1R) signaling represents a promising nexus between the abnormalities seen in both epilepsy and ensuing cardiac complications. The study explored the potential of Berberine (BER), a promising S1R agonist, in treating epilepsy and associated cardiac abnormalities in a pentylenetetrazol (PTZ) kindling rat model of epilepsy. Male Wistar albino rats received PTZ (35 mg/kg) every other day alone, with BER, with phenytoin (PHT), with both BER and PHT and with both BER and an S1R blocker (NE-100) over 27 days. BER decreased seizure severity and improved hemodynamic parameters. Histopathological abnormalities were more pronounced in the PTZ, and blocker group than in other groups, in heart tissue. In cardiac tissue, BER enhanced the AKT/eNOS signaling pathway and mitigated ferroptosis by boosting the cystine/glutamate transporter/Glutathione/Glutathione Peroxidase 4 (XCT/GSH/GPX4) system and ferritin heavy chain-1 (FTH-1) expression, while reducing iron and Transferrin receptor protein 1 (TFR1) levels. Such effects were largely negated by NE-100 pretreatment. In conclusion, BER shows protective effects on cardiac dysfunction induced by the PTZ kindling model by acting as an S1R agonist and influencing the AKT/eNOS signaling pathway and ferroptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuropharm.2025.110295 | DOI Listing |
Int J Surg
January 2025
Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, Jiangsu, China.
Background: Type A aortic dissection (TAAD) remains a significant challenge in cardiac surgery, presenting high risks of adverse outcomes such as permanent neurological dysfunction and mortality despite advances in medical technology and surgical techniques. This study investigates the use of quantitative electroencephalography (QEEG) to monitor and predict neurological outcomes during the perioperative period in TAAD patients.
Methods: This prospective observational study was conducted at the hospital, involving patients undergoing TAAD surgery from February 2022 to January 2023.
Intensive Care Med
January 2025
Center for Disease Mechanisms Research, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
Purpose: Major cardiovascular surgery imposes high physiologic stress, often causing severe organ dysfunction and poor outcomes. The underlying mechanisms remain unclear. This study investigated metabolic changes induced by major cardiovascular surgery and the potential role of identified metabolic signatures in postoperative acute kidney injury (AKI).
View Article and Find Full Text PDFSleep Breath
January 2025
Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, John Paul II Hospital, Prądnicka 80, Kraków, 31-202, Poland.
Background: Obstructive sleep apnoea (OSA) may lead to heart rhythm abnormalities including bradycardia. Our aim was to ascertain clinical and echocardiographic parameters in patients with OSA in whom severe bradycardia was detected in an outpatient setting, as well as to evaluate the efficacy of CPAP therapy on heart rate normalization at the early stages of treatment.
Methods: Fifteen patients mild, moderate or severe OSA and concomitant bradycardia were enrolled.
J Physiol
January 2025
Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
The mechanisms that drive placental dysfunction in pregnancies complicated by hypoxia and fetal growth restriction remain poorly understood. Changes to mitochondrial respiration contribute to cellular dysfunction in conditions of hypoxia and have been implicated in the pathoaetiology of pregnancy complications, such as pre-eclampsia. We used bespoke isobaric hypoxic chambers and a combination of functional, molecular and imaging techniques to study cellular metabolism and mitochondrial dynamics in sheep undergoing hypoxic pregnancy.
View Article and Find Full Text PDFPhysiol Rep
February 2025
Quebec Heart and Lung Institute - Laval University, Quebec, Quebec, Canada.
Metabolic dysfunction-associated steatotic liver disease (MASLD) describes liver diseases caused by the accumulation of triglycerides in hepatocytes (steatosis) as well as the resulting inflammation and fibrosis. Previous studies have demonstrated that accumulation of fat in visceral adipose tissue compartments and the liver is associated with alterations in the circulating levels of some amino acids, notably glutamate. This study aimed to investigate the associations between circulating amino acids, particularly glutamate, and MASLD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!