Deep Learning for Classification of Inflammatory Bowel Disease Activity in Whole Slide Images of Colonic Histopathology.

Am J Pathol

Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA; Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA. Electronic address:

Published: January 2025

Grading activity of inflammatory bowel disease (IBD) using standardized histopathological scoring systems remains challenging due to limited availability of pathologists with IBD expertise and inter-observer variability. In this study, a deep learning model was developed to classify activity grades in hematoxylin and eosin-stained whole slide images (WSIs) from patients with IBD, offering a robust approach for general pathologists. This study utilized 2,077 WSIs from 636 patients who visited Dartmouth-Hitchcock Medical Center in 2018 and 2019, scanned at 40× magnification (0.25 μm/pixel). Board-certified gastrointestinal pathologists categorized the WSIs into four activity classes: inactive, mildly active, moderately active, and severely active. A transformer-based model was developed and validated using five-fold cross-validation to classify IBD activity. Using HoVerNet, neutrophil distribution across activity grades was examined. Attention maps from the model highlighted areas contributing to its prediction. The model classified IBD activity with weighted averages of 0.871 [95% Confidence Interval (CI): 0.860-0.883] for the area under the curve, 0.695 [95% CI: 0.674-0.715] for precision, 0.697 [95% CI: 0.678-0.716] for recall, and 0.695 [95% CI: 0.674-0.714] for F1-score. Neutrophil distribution was significantly different across activity classes. Qualitative evaluation of attention maps by a gastrointestinal pathologist suggested their potential for improved interpretability. The model demonstrates robust diagnostic performance and could enhance consistency and efficiency in IBD activity assessment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajpath.2024.12.010DOI Listing

Publication Analysis

Top Keywords

ibd activity
12
activity
9
deep learning
8
inflammatory bowel
8
bowel disease
8
slide images
8
model developed
8
activity grades
8
activity classes
8
neutrophil distribution
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!