Simultaneous nitrogen removal and phosphorus recovery in granular sludge-based partial denitrification/anammox-hydroxyapatite precipitation (PD/A-HAP) process under low C/N ratio and dissolved oxygen limitation.

Bioresour Technol

School of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China; Zhengzhou Key Laboratory of Water Safety and Water Ecology Technology, Zhengzhou 450001, China; Henan International Joint Laboratory of Environmental Pollution Remediation and Grain Quality Security, Zhengzhou 450001, China.

Published: January 2025

This study integrates partial denitrification/Anammox (PD/A) with hydroxyapatite (HAP) crystallization in a single reactor, achieving simultaneous nitrogen and phosphorus removal along with phosphorus recovery. By adjusting pH, sludge concentration, low COD/TN ratio, and applying moderate dissolved oxygen stress, the system operated stably and promoted the synergistic growth of HAP and biomass. Results showed a nitrogen removal efficiency (NRE) of 94.13 % and a phosphorus removal efficiency (PRE) of 73.6 %. Metagenomic analysis revealed that under dissolved oxygen stress, The abundance of Candidatus Brocadia increased from 1 % to 26.1 %, significantly boosting anammox activity. indicating enhanced microbial activity. The upregulation of related genes (sdh, suc, hzs) further boosted AnAOB activity. HAP was identified as the main inorganic component of the granule. This process shows strong potential for nitrogen and phosphorus removal with resource recovery in wastewater treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2025.132045DOI Listing

Publication Analysis

Top Keywords

dissolved oxygen
12
phosphorus removal
12
simultaneous nitrogen
8
nitrogen removal
8
removal phosphorus
8
phosphorus recovery
8
nitrogen phosphorus
8
oxygen stress
8
removal efficiency
8
removal
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!