Introduction: Mesenchymal stem cell (MSC)-based therapies have emerged as a promising approach for treating articular cartilage injuries. However, enhancing the chondrogenic differentiation potential of MSCs remains a significant challenge. KDM6B, a histone demethylase that specifically removes H3K27me3 marks, is essential in controlling the maturation of chondrocytes. In this study, we examined how KDM6B influences chondrogenic differentiation in SCAPs and investigated the underlying mechanisms involved.
Methods: SCAPs were utilized. Alcian Blue staining, pellet culture, and cell transplantation in rabbit knee cartilage defect models assessed MSC chondrogenic differentiation. Western blot, Real-time RT-PCR, and Microarray analysis examined the underlying molecular mechanisms.
Results: KDM6B promotes the expression of Aggrecan, COL2A1, COL5, glycosaminoglycans, and collagen fibers, while also increasing the COL2/COL1 ratio in SCAPs. In vivo, SCAPs overexpressing KDM6B significantly enhanced the repair and regeneration of knee cartilage and subchondral bone, with higher levels of glycosaminoglycan and COL5 expression observed within the tissue. KDM6B promotes the chondrogenic differentiation potential of SCAPs by repressing HES1. In addition, knock-down of HES1 enhanced the chondrogenic differentiation of SCAPs.
Conclusions: KDM6B enhances the differentiation of SCAPs into chondrocytes and demonstrated its effectiveness in the repair and regeneration of cartilage tissue and subchondral bone in vivo experiments. These findings provide an important foundation for future research on the use of dental tissue-derived stem cells to treat cartilage injuries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000543359 | DOI Listing |
Introduction: Mesenchymal stem cell (MSC)-based therapies have emerged as a promising approach for treating articular cartilage injuries. However, enhancing the chondrogenic differentiation potential of MSCs remains a significant challenge. KDM6B, a histone demethylase that specifically removes H3K27me3 marks, is essential in controlling the maturation of chondrocytes.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
The Affiliated Lihuili Hospital of Ningbo University, Ningbo 315040, China. Electronic address:
Cartilage repair remains a formidable challenge because of its limited regenerative capacity. Construction of a biomimetic hydrogel matrix that can induce cell aggregation is a promising therapeutic option. Cell aggregates are more beneficial than dissociated cells for improving survival and chondrogenic differentiation, thereby facilitating cartilage repair.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
January 2025
The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.
The formation of fibrocartilage in microfracture (MFX) severely limits its long-term outlook. There is consensus in the scientific community that the placement of an appropriate scaffold in the MFX defect site can promote hyaline cartilage formation and improve therapeutic benefit. Accordingly, in this work, a novel natural biomaterial-the cartilage analog (CA)-which met criteria favorable for chondrogenesis, was evaluated in vitro to determine its candidacy as a potential MFX scaffold.
View Article and Find Full Text PDFCells
December 2024
AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland.
In the context of bone fractures, the influence of the mechanical environment on the healing outcome is widely accepted, while its influence at the cellular level is still poorly understood. This study explores the influence of mechanical load on naïve mesenchymal stem cell (MSC) differentiation, focusing on hypertrophic chondrocyte differentiation. Unlike primary bone healing, which involves the direct differentiation of MSCs into bone-forming cells, endochondral ossification uses an intermediate cartilage template that remodels into bone.
View Article and Find Full Text PDFFront Vet Sci
December 2024
Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China.
Deer antler-derived reserve mesenchyme cells (RMCs) are a promising source of cells for cartilage regeneration therapy due to their chondrogenic differentiation potential. However, the regulatory mechanism has not yet been elucidated. In this study, we analyzed the role of microRNAs (miRNAs) in regulating the differentiation of RMCs and in the post-transcriptional regulation of chondrogenesis and hypertrophic differentiation at the molecular and histological levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!