Multi-targeted drug therapy has received substantial attention for the treatment of diseases of multi-factorial origin, including neurodegenerative and autoimmune diseases. It seems reasonable to argue that the complex pathology of neurodegenerative diseases (ND) cannot be reduced to a single target to modulate a broad range of cellular signaling, associated pathologies, and symptoms. It is this idea that has brought the attention of the scientific world towards phytochemicals and traditional drugs that are notoriously multi-targeted. A systematic study of these formulations and establishing the molecular pathways of individual molecules can lead to a standardized multi-component product that can modulate a broad range of activities on different targets of ND. This could provide an accessible and affordable solution to the significant disease burden of ND. With this idea in mind, a systematic review was carried out on an Ayurvedic product Manasamitra Vatakam (MMV), known to be a neuroprotective formulation and highly effective against Alzheimer's disease. MMV can be a source of phytomolecules for treating neurodegenerative diseases. The multifactorial nature of these diseases makes them suitable candidates for testing phytochemicals due to the inherent multitargeting capabilities of these compounds. The primary objective of this review is to provide a comprehensive understanding of the phytomolecules from MMV that are responsible for its multitargeted effect against neurodegenerative diseases. From the reported literature, it is clear that many phytoconstituents and extracts of the herbal ingredients from MMV have demonstrated their efficacy against AD models. However, the combination of these molecules in AD models has never been tested. Scientific studies should be done to explore the bioactive compounds in the formulation and the druggability of these identified compounds can be evaluated using experimental methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jaim.2024.101041 | DOI Listing |
Neurochem Res
January 2025
Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder characterized by cognitive decline. Despite extensive research, therapeutic options remain limited. Varenicline, an αβ nicotinic acetylcholine receptor agonist, shows promise in enhancing cognitive function.
View Article and Find Full Text PDFNeurosci Bull
January 2025
Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
Mov Disord Clin Pract
January 2025
Department of Neurology, Hannover Medical School, Hannover, Germany.
Background: Patients with Progressive Supranuclear Palsy (PSP) suffer from several neuropsychological impairments. These mainly affect the frontal lobe and subcortical brain structures. However, a scale for the assessment of cognitive and neuropsychiatric disability in PSP is still missing.
View Article and Find Full Text PDFHum Brain Mapp
February 2025
Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA.
Neurodegeneration is presumed to be the pathological process measure most proximal to clinical symptom onset in Alzheimer Disease (AD). Structural MRI is routinely collected in research and clinical trial settings. Several quantitative MRI-based measures of atrophy have been proposed, but their low correspondence with each other has been previously documented.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!