Integrating genetics, metabolites, and clinical characteristics in predicting cardiometabolic health outcomes using machine learning algorithms - A systematic review.

Comput Biol Med

Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading, RG6 6DZ, UK; Institute for Food, Nutrition and Health (IFNH), University of Reading, Reading, RG6 6AH, UK. Electronic address:

Published: January 2025

Background: Machine learning (ML) integration of clinical, metabolite, and genetic data reveals variable results in predicting cardiometabolic health (CMH) outcomes. Therefore, we aim to (1) evaluate whether a multi-modal approach incorporating all three data types using ML algorithms can improve CMH outcome prediction compared to single-modal or paired-modal models, and (2) compare the methodologies used in existing prediction models.

Methods: We systematically searched five databases from 1998 to 2024 for ML predictive modelling studies using the multi-modal approach for CMH outcomes. Risk-of-bias assessment tools were used to assess methodological quality. Study characteristics, ML algorithms, data preprocessing, evaluation methods and metrics, feature selections, and feature importance parameters were synthesized narratively to show methodological heterogeneity.

Results: Of the four included studies (3 ML algorithms), three were at low risk of bias, and one was at high risk. The multi-modal approach consistently improved T2D and BP prediction compared to single-modal or paired-modal models. Genetics showed the lowest predictive performance in three studies. Logistic regression (n = 2 studies) and random forest (n = 1) were used in T2D studies, while XGBoost was used in one BP study. One study with missing data and variations in feature selection across all studies hindered a comprehensive comparison of feature importance.

Conclusions: Our review emphasizes the potential improvement in T2D and BP prediction using ML algorithms with the multi-modal approach. However, further studies using diverse ML algorithms with optimized methodologies on single-modal, paired-modal, and multi-modal models are needed to gain insights into biomarker selection for predicting CMH outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2025.109661DOI Listing

Publication Analysis

Top Keywords

multi-modal approach
16
cmh outcomes
12
single-modal paired-modal
12
predicting cardiometabolic
8
cardiometabolic health
8
machine learning
8
prediction compared
8
compared single-modal
8
paired-modal models
8
t2d prediction
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!