Purpose: Minibeam radiotherapy (MBRT) uses small parallel beams of radiation to create a highly modulated dose pattern. The aim of this study is to develop an optical radioluminescence imaging (RLI) approach to perform real-time dose measurement for MBRT.
Methods: MBRT was delivered using an image-guided small animal irradiator equipped with a custom collimator. Five slabs of plastic scintillators with a thicknesses of 0.5, 1, 2, 3 and 10 mm were placed on top of a mouse phantom, to localize and measure the delivered dose. A thin radioluminescence film (GdOS:Tb) was used to obtain the mini beam dose profile that was compared against GafChromic (GC) films measurements. The RLI signal was detected with a CMOS camera placed at 90 deg with respect to the beam axis. Monte Carlo (MC) simulations were also performed using TOPAS for comparison with the experimental results.
Results: The measured peak to valley dose ratio (PVDR) obtained with RLI was 16.7 in line with GC films measurements. The differences between peak and valley dimension were less that 3% with respect to GC measurements. Using RLI performed with the scintillator slabs, it was possible to localize and measure in real-time MBRT delivery on the mouse phantom.
Conclusions: We proposed a novel method for MBRT dose localization and measurement in real-time based on RLI. The results we obtained are in good agreement with GC film measurements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmp.2025.104894 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!