Molybdenum (Mo) is an essential micronutrient for plants, yet it also poses potential environmental risks when present in excess. This study investigated the Mo speciation in soils with varying properties and their influences on Mo uptake by wheat (Triticum aestivum L.), a staple crop with significant implications for global food security. Mo K-edge X-ray absorption spectroscopy (XAS), combined with a sequential extraction method, was employed to analyze the chemical speciation and fractionation of Mo in the soils before and after wheat cultivation. The predominant Mo species identified were sorbed molybdate (Mo(VI)) and Ca- and Fe-Mo(VI) precipitates. After wheat cultivation, sorbed Mo(VI) and Ca-Mo(VI) decreased while Fe-Mo(VI) increased, with the most notable changes observed in the alkaline soil. These changes indicated that the desorption of sorbed Mo(VI) and dissolution of Ca-Mo(VI) contributed to soil Mo availability, while Fe-Mo(VI) precipitation restricted it. Bioaccumulation and translocation factors revealed efficient Mo uptake and transport within wheat plants, with shoots being the primary site of Mo accumulation. Elevated Mo concentrations in wheat grains raise potential human health concerns due to dietary exposure. These findings underscore the critical role of soil Mo speciation in controlling Mo dynamics in soil-wheat systems, providing valuable insights for managing Mo in agricultural soils to balance its nutritional benefits with the risks of excessive crop accumulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2025.124097 | DOI Listing |
J Environ Manage
January 2025
Department of Agricultural Chemistry, National Taiwan University, Taipei, 106319, Taiwan. Electronic address:
Molybdenum (Mo) is an essential micronutrient for plants, yet it also poses potential environmental risks when present in excess. This study investigated the Mo speciation in soils with varying properties and their influences on Mo uptake by wheat (Triticum aestivum L.), a staple crop with significant implications for global food security.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Applied Geochemistry, Department of Civil, Environmental and Natural Resource Engineering, Luleå University of Technology, Luleå, Sweden.
Research regarding the geochemistry of beryllium (Be) in terrestrial environments is hindered by its high toxicity to humans and the low concentrations normally occurring in the environment. Although Be is considered an immobile element, extremely high dissolved concentrations have been detected in groundwater in the legacy Tailings Storage Facility (TSF) of Smaltjärnen, Sweden. Therefore, a detailed study was conducted to determine physiochemical parameters affecting the speciation of Be in the groundwater.
View Article and Find Full Text PDFJ Occup Environ Med
January 2025
Department of Biostatistics, Florida International University, Miami, FL, United States.
Objective: To assess factors influencing Neonatal Respiratory Distress Syndrome (RDS) risk, incorporating maternal demographics, behaviors, medical conditions, pregnancy-related factors, and PM2.5 speciation pollutants exposures.
Methods: Using Florida de-identified birth records, logistic regression analyses were conducted to assess associations between maternal exposure to PM2.
J Hazard Mater
January 2025
E2Lim - Eau et Environnement Limoges UR 24133, University of Limoges, Limoges, France.
Excess of trace elements (TE) significantly alters the performances of anaerobic digestors (AD). Due to interactions with organic matter in particular, only a small fraction of TE can effectively interact with the biomass. However, assessing the bioavailable fraction of TE remains an issue.
View Article and Find Full Text PDFWater Res
December 2024
Deptartment of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, HZ 2629, the Netherlands; Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark.
Extracellular Polymeric Substances (EPS) are ubiquitous in biological wastewater treatment (WWT) technologies like activated sludge systems, biofilm reactors, and granular sludge systems. EPS recovery from sludge potentially offers a high-value material for the industry. It can be utilized as a coating in slow-release fertilizers, as a bio-stimulant, as a binding agent in building materials, for the production of flame retarding materials, and more.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!