Plastic pollution, particularly microplastics and nanoplastics, poses a significant threat to marine ecosystems. Bivalves, vital filter feeders that accumulate plastic particles, underscore the necessity for advanced omics technologies to grasp their molecular reactions to plastic exposure. This review delves into the impact of microplastics and nanoplastics on bivalves utilizing advanced omics technologies. Through an examination of omics data, this review sheds light on how bivalves react to plastic pollution, informing strategies for conservation and food safety. Furthermore, theoretical pathways have been formulated to decipher how bivalves respond to environmental stressors from microplastics or nanoplastics through the integration of diverse biological fields. In this review, we report that microplastics and nanoplastics in marine ecosystems primarily stem from human activities on land and in marine domains. Bivalves are negatively influenced by plastic contamination, impacting their health and economic worth. Exposure to plastic particles disrupts bivalve behavior, metabolism, and reproduction, precipitating health concerns. Integration of omics data is instrumental in unraveling molecular interactions and devising biomarkers for monitoring purposes. Ingestion of plastics by bivalves poses risks to human health. Additionally, mitigation tactics involve bans, levies, and advocating for biodegradable alternatives to curtail plastic pollution. The amalgamation of omics findings aids in the comprehension of bivalve responses and effectively addressing plastic pollution. Moreover, addressing plastic pollution necessitates a multidisciplinary approach encompassing scientific inquiry, regulatory frameworks, and collaboration with stakeholders. These strategies are paramount in safeguarding bivalves, marine ecosystems, food safety, and human health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aquatox.2024.107224 | DOI Listing |
Environ Sci Technol
January 2025
Department of Environmental Systems Science, ETH Zürich, Zürich 8092, Switzerland.
When microplastics (MPs) enter water bodies, they undergo various transport processes, including sedimentation, which can be influenced by factors such as particle size, density, and interactions with other particles. Surface waters contain suspended natural particles (e.g.
View Article and Find Full Text PDFWorld J Clin Cases
January 2025
Department of Nephrology, Clinical Poison Center, Chang Gung Memorial Hospital, Linkou 33305, Taoyuan, Taiwan.
The issue of plastic pollutants has become a growing concern. Both microplastics (MPs) (particle size < 5 mm) and nanoplastics (NPs) (particle size < 1 µm) can cause DNA damage, cytotoxicity, and oxidative stress in various organisms. The primary known impacts of microplastic/nanoplastic are observed in the liver and respiratory system, leading to hepatotoxicity and chronic obstructive pulmonary disease.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Lab of Paper Science and Technology of Ministry of Elucation, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China. Electronic address:
Environmental pollution and health problems caused by traditional non-degradable fossil-based plastics are significant concerns, rendering green and renewable bio-based materials, such as cellulose and C-Priamine (1074), as attractive substitutes. In particular, the low plasticity of cellulose can be optimized using soft alkyl chains. Herein, multifunctional cellulose-based materials were constructed via covalent adaptable networks using the Schiff base reaction of oxidized microcrystalline cellulose with varying aldehyde (dialdehyde cellulose (DAC)) contents and C-Priamine (1074).
View Article and Find Full Text PDFToxicology
January 2025
Yangzhou University Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225009, China; Jiangsu Key Laboratory of Non coding RNA Basic and Clinical Transformation, Yangzhou University, Yangzhou, Jiangsu Province 225009, China. Electronic address:
Microplastics (MPs), as the crucial environmental pollutants, can be easily transported into the human body and accumulate in the liver. However, current studies mainly focus on acute exposure to MPs, investigations on long-term interactions with MPs alone remain limited. Thereby, we examined noxious properties of MPs and selected the most common polystyrene (PS) MPs as the research object, including unmodified PS MPs (PS-MPs) and positive-charged PS MPs (PS-NH) at 10 mg/L employing oral drinking water methods in mice for six consecutive months in vivo.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Organic Geochemistry Unit, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK; School of Geography, University of Bristol, Bristol BS8 1SS, UK.
Plastic mulch films support global food security, however, their composition and the potential release rates of organic, metal and metalloid co-contaminants remains relatively unknown. This study evaluates the low molecular weight organic additives, metal and metalloid content and leaching from low density polyethylene (LDPE) and biodegradable plastic mulch films. We identified 59 organic additives, and non-intentionally added substances in the new LDPE films (39.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!