Fast fabrication of stimuli-responsive MXene-based hydrogels for high-performance actuators with simultaneous actuation and self-sensing capability.

J Colloid Interface Sci

Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037 China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037 China. Electronic address:

Published: January 2025

Poly(N-isopropylacrylamide) (PNIPAM) composite hydrogels have recently emerged as promising candidates for soft hydrogel actuators. However, developing a facile and fast method to obtain multifunctional PNIPAM hydrogel actuators with simulating biological versatility remains a major challenge. Herein, we developed a fast-redox initiation system to prepare PNIPAM/sodium carboxymethyl cellulose (CMC)/TCT MXene nanocomposite hydrogel with multidirectional actuating behaviors and improved mechanical properties. The rapid thermoresponsive behavior of the PNIPAM/CMC/MXene layer bestows its corresponding bilayer actuator with an extraordinary actuation speed of 9.36°/s in hot water. Owing to the high photothermal conversion of MXenes, this PNIPAM/CMC/MXene hydrogel displays a range of remote-controlled actuations upon NIR light irradiation, including bending, rolling, displacement, and simulations of the sea eel's hunting behaviors in a water environment. More importantly, based on the excellent electrical properties of MXene, the PNIPAM/CMC/MXene-based hydrogel actuators have accomplished a self-sensing function by integrating the surface temperature-bending angle-the relative resistance changes during the NIR light-driven actuation process. The photothermal actuator's integrated actuation and sensing capabilities have facilitated the feedback of the contact and movement dynamics of the bioinspired artificial tongue. The straightforward preparation and multifunctional design of MXene-based hydrogel may facilitate the development of soft smart actuators.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2025.01.032DOI Listing

Publication Analysis

Top Keywords

hydrogel actuators
12
hydrogel
6
actuators
5
fast fabrication
4
fabrication stimuli-responsive
4
stimuli-responsive mxene-based
4
mxene-based hydrogels
4
hydrogels high-performance
4
high-performance actuators
4
actuators simultaneous
4

Similar Publications

Fast fabrication of stimuli-responsive MXene-based hydrogels for high-performance actuators with simultaneous actuation and self-sensing capability.

J Colloid Interface Sci

January 2025

Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037 China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037 China. Electronic address:

Poly(N-isopropylacrylamide) (PNIPAM) composite hydrogels have recently emerged as promising candidates for soft hydrogel actuators. However, developing a facile and fast method to obtain multifunctional PNIPAM hydrogel actuators with simulating biological versatility remains a major challenge. Herein, we developed a fast-redox initiation system to prepare PNIPAM/sodium carboxymethyl cellulose (CMC)/TCT MXene nanocomposite hydrogel with multidirectional actuating behaviors and improved mechanical properties.

View Article and Find Full Text PDF

A Photothermal-Responsive Soft Actuator Based on Biomass Carbon Nanosheets of Synergistic Bilateral Polymers.

Polymers (Basel)

December 2024

NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou 571199, China.

Currently, polymer actuators capable of photothermal response are being developed to be more sensitive and repeatable. In this work, a three-layered structured soft film actuator (NA/PET/NI-3) was designed by combining poly(N-isopropylacrylamide) (PNIPAM), poly(N-(2-aminoethyl)-acrylamide) (PANGA) and poly(ethylene glycol-co-terephthalate) (PET) film. Coconut water and PEI were used to synthesize a new kind of carbon nanosheet (PEI-CCS), which, when triggered by near-infrared light, will enable photothermal bending behavior in the micrometer-scale NA/PET/NI-n film, while PET served as the supporting and heat conducting layer.

View Article and Find Full Text PDF

Recent efforts have focused on developing stimuli-responsive soft actuators that mimic the adaptive, complex, and reversible movements found in natural species. However, most hydrogel actuators are limited by their inability to combine wavelength-selectivity with reprogrammable shape changes, thereby reducing their degree of freedom in motion. To address this challenge, we present a novel strategy that integrates these capabilities by grafting fluorophores onto temperature-responsive hydrogels.

View Article and Find Full Text PDF

The specific ion effect (SIE), the control of polymer solubility in aqueous solutions by the added ions, has been a phenomenon known for more than a century. The seemingly simple nature of the ion-polymer-water interactions can lead to complex behaviors, which have also been exploited in many applications in biochemistry, electrochemistry, and energy harvesting. Here, we show an emerging diversification of actuation behaviors in "salty" hydrogel and hydrogel-paper actuators.

View Article and Find Full Text PDF

Four-dimensional printing (4DP) technologies can expand the functionality of stimuli-responsive devices to enable the integration of multiple stimuli-responsive parts into a compact device. Herein, we used digital light processing three-dimensional printing technique, flexible photocurable resins, and photocurable resins of the temperature-responsive hydrogels comprising -isopropylacrylamide (NIPAM), ,'-methylenebis(acrylamide) (MBA), and graphene for 4DP of a lab-on-valve (LOV) solid-phase extraction (SPE) device. This device featured flow manifolds and a monolithic packing connected by four near-infrared (NIR)-actuated temperature-responsive switching valves composed of a poly(NIPAM/MBA) (PNM) ball pushing a flexible membrane.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!