Multifunctional porphyrinic metal-organic framework-based nanoplatform regulating reactive oxygen species achieves efficient imaging-guided cascaded nanocatalytic therapy.

J Colloid Interface Sci

Department of Chemistry, Kay Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Beijing Key Laboratory for Analytical Methods and Instrumentation, Tsinghua University, 100084 Beijing, China. Electronic address:

Published: January 2025

The integration of reactive oxygen species (ROS) related photodynamic therapy (PDT) with the strategy of reshaping the tumor microenvironment (TME) has emerged as a potential approach for nanodiagnostic and therapeutic interventions. However, the therapeutic efficacy based on ROS treatments may be hindered by intracellular antioxidants such as glutathione (GSH) and tumor hypoxia. To address these challenges, a nanoplatform based on GSH-responsive multifunctional porphyrinic metal-organic framework (PCN-224@Au@MnO@HA, PAMH) was proposed. It was developed through a layer-by-layer in-situ growth method. This method avoids the need for high-temperature calcination and complex modification processes while improving the stability of PCN-224 in a phosphate-rich environment. GSH depletion leads to oxidation-reduction imbalance in TME. With the inactivation of GSH peroxidase 4 (GPX4), the content of hydrogen peroxide (HO) increases, ultimately triggering lipid peroxidation (LPO) and promoting ferroptosis. The catalase-like activity of Au nanozymes facilitates the generation of oxygen (O), thereby mitigating tumor hypoxia and downregulating hypoxia-inducing factors (HIF-1α). Due to the presence of porphyrin ligands in PCN-224, the generated O can be further converted to toxic singlet oxygen (O) under laser irradiation. Additionally, the platform allows near-infrared (NIR) fluorescence imaging, providing real-time information on intracellular GSH changes during PDT and ferroptosis. The PAMH nanoplatform has shown effective inhibition of tumor growth in subcutaneous models via both intravenous and intratumoral injection, indicating its potential in modulating reactive oxygen/sulfur species and reshaping TME, thereby facilitating imaging-guided cascaded nanocatalytic therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2025.01.041DOI Listing

Publication Analysis

Top Keywords

multifunctional porphyrinic
8
porphyrinic metal-organic
8
reactive oxygen
8
oxygen species
8
imaging-guided cascaded
8
cascaded nanocatalytic
8
nanocatalytic therapy
8
tumor hypoxia
8
metal-organic framework-based
4
framework-based nanoplatform
4

Similar Publications

Multifunctional porphyrinic metal-organic framework-based nanoplatform regulating reactive oxygen species achieves efficient imaging-guided cascaded nanocatalytic therapy.

J Colloid Interface Sci

January 2025

Department of Chemistry, Kay Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Beijing Key Laboratory for Analytical Methods and Instrumentation, Tsinghua University, 100084 Beijing, China. Electronic address:

The integration of reactive oxygen species (ROS) related photodynamic therapy (PDT) with the strategy of reshaping the tumor microenvironment (TME) has emerged as a potential approach for nanodiagnostic and therapeutic interventions. However, the therapeutic efficacy based on ROS treatments may be hindered by intracellular antioxidants such as glutathione (GSH) and tumor hypoxia. To address these challenges, a nanoplatform based on GSH-responsive multifunctional porphyrinic metal-organic framework (PCN-224@Au@MnO@HA, PAMH) was proposed.

View Article and Find Full Text PDF

Tuning Bro̷nsted Acidity by up to 12 p Units in a Redox-Active Nanopore Lined with Multifunctional Metal Sites.

J Am Chem Soc

January 2025

Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States.

Electrostatic interactions, hydrogen bonding, and solvation effects can alter the free energies of ionizable functional groups in proteins and other nanoporous architectures, allowing such structures to tune acid-base chemistry to support specific functions. Herein, we expand on this theme to examine how metal sites ( = H, Zn, Co, Co) affect the p of benzoic acid guests bound in discrete porphyrin nanoprisms () in CDCN. These host-guest systems were chosen to model how porous metalloporphyrin electrocatalysts might influence H transfer processes that are needed to support important electrochemical reactions (e.

View Article and Find Full Text PDF

The mechanism of autoreduction in Dehaloperoxidase-A.

Biochem Biophys Res Commun

January 2025

Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA. Electronic address:

Hemoglobin and myoglobin are known to undergo autoxidation, in which the oxyferrous form of the heme is oxidized to the ferric state by O. Dehaloperoxidase-A (DHP-A), a multifunctional catalytic hemoglobin from Amphitrite ornata is an exception and is observed to undergo the reverse process, during which the ferric heme is spontaneously reduced to the oxyferrous form under aerobic conditions. The high reduction potential of DHP (+202 mV at pH 7.

View Article and Find Full Text PDF

We report the synthesis of multifunctional periodic mesoporous organosilica nanoparticles (PMO NPs) with substantial two-photon absorption properties and targeting capability for two-photon excitation fluorescence (TPEF) and photodynamic therapy (TPE-PDT). Prepared using an adapted sol-gel synthesis, the nanoplatforms integrated two silylated chromophores in their three-dimensional matrix to maximize non-radiative Förster resonance energy transfer from a high two-photon absorption fluorophore donor to a porphyrin derivative acceptor, leading to an enhanced generation of reactive oxygen species. Combinations of biodegradable and non-biodegradable bis(triethoxysilyl)alkoxysilanes were employed for the synthesis of the NPs, and the corresponding photophysical studies revealed high efficiency levels of FRET.

View Article and Find Full Text PDF

The tetrapyrrolic macrocycle as a scaffold for various chemical modifications provides broad opportunities for the preparation of complex multifunctional conjugates suitable for binary antitumor therapies. Typically, illumination with monochromatic light triggers the photochemical generation of reactive oxygen species (ROS) (photodynamic effect). However, more therapeutically valuable effects can be achieved upon photoactivation of tetrapyrrole derivatives.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!