The surface characteristics of scaffolds utilized in bone tissue engineering profoundly influence subsequent cellular response. This study investigated the efficacy of applying a gelatin coat to the surface of aminolysis surface-modified scaffolds fabricated through 3D printing with a polycaprolactone/hydroxyapatite nanocomposite, employing the hot-melt extrusion FDM technique. Initially, aminolysis surface modification using hexamethylenediamine enhanced surface hydrophilicity by introducing amine functional groups. Subsequently, gelatin solutions were applied to the scaffolds, and crosslinking with EDC/NHS was performed to increase coating strength. Contact angle measurements revealed a significantly increased surface hydrophilicity post-aminolysis. Aminolysis facilitated uniform gelatin coating formation and distribution. Subsequently, crosslinking enhanced coating durability. The addition of gelatin coating resulted in a notable 20 % increase in scaffold mechanical strength and more than 50 % rise in Young's modulus and exhibited enhancement of biodegradability and bioactivity. Gelatin coated scaffolds also demonstrated improved cell viability and adhesion and over two times higher expression of OPN and ALP genes, suggesting improved biological properties. In addition, in vivo bone formation studies verified the biological enhancement of scaffolds. Utilizing an immobilized crosslinked gelatin biomacromolecule coating effectively enhanced the biological characteristics of 3D printed scaffolds and their potential applications as bone tissue engineering scaffolds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2025.114505DOI Listing

Publication Analysis

Top Keywords

biological characteristics
8
aminolysis surface-modified
8
gelatin biomacromolecule
8
bone tissue
8
tissue engineering
8
surface hydrophilicity
8
gelatin coating
8
gelatin
7
scaffolds
7
surface
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!