[Impacts of curcumin on proliferation, migration and cisplatin resistance of bladder cancer cells by regulating LKB1-AMPK-LC3 signaling pathway].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

National Key Laboratory of Bioreactors, School of Biological Engineering, East China University of Science and Technology, Shanghai 200237, China. *Corresponding author, E-mail:

Published: January 2025

AI Article Synopsis

  • The study investigates how curcumin affects bladder cancer cells regarding growth, movement, and resistance to cisplatin (a chemotherapy drug) by targeting a specific signaling pathway (LKB1-AMPK-LC3).
  • Human bladder cancer cells (T24) and their cisplatin-resistant counterparts (T24/DDP) were treated with varying concentrations of curcumin, and various assays measured cell proliferation, migration, autophagy, and apoptosis.
  • Results showed that curcumin, especially when combined with metformin, influences these cellular functions and could reduce drug resistance, affecting the expression of proteins in the targeted signaling pathway.

Article Abstract

Objective To study the impacts of curcumin on the proliferation, migration and cisplatin (DDP) resistance of bladder cancer cells by regulating the liver kinase B1-AMP activated protein kinase-microtubule-associated protein 1 light chain 3 (LKB1-AMPK-LC3) signaling pathway. Methods Human bladder cancer cell line T24 was cultured in vitro, and its DDP resistant T24/DDP cells were induced by cisplatin (DDP). After treating T24 and T24/DDP cells with different concentrations of curcumin, the optimal concentration of curcumin was screened by MTT assay. T24 cells were randomly grouped into control group, curcumin group, metformin group, and combination group of curcumin and metformin. After treatment with curcumin and LKB1-AMPK activator metformin, the proliferation, autophagy, migration, and apoptosis of T24 cells in each group were detected by MTT assay, monodansylcadavrine (MDC) fluorescence staining, cell scratch assay, and flow cytometry, respectively. Western blot was used to detect the expression of proteins related to LKB1-AMPK-LC3 signaling pathway in T24 cells of each group. T24/DDP cells were randomly assigned into control group, curcumin group, metformin group, and combination group of curcumin and metformin. Cells were treated with curcumin and metformin according to grouping and treated with different concentrations of DDP simultaneously. Then, the effect of curcumin on the DDP resistance coefficient of T24/DDP cells was detected by MTT assay. T24/DDP cells were randomly grouped into control group, DDP group, combination groups of DDP and curcumin, DDP and metformin, DDP, curcumin and metformi. After treatment with DDP, curcumin, and metformin, the proliferation, autophagy, migration, apoptosis, drug resistance, and the expression of proteins related to LKB1-AMPK-LC3 signaling pathway in T24/DDP cells of each group were detected with the same methods. Results Compared with the control group, the activity of T24 cells, relative number of autophagosomes, migration rate, Phosphorylated-LKB1 (p-LKB1)/LKB1, Phosphorylated-AMPK (p-AMPK)/AMPK, LC3II/LC3I, and the DDP resistance coefficient of T24/DDP cells in the curcumin group were lower, and the apoptosis rate of T24 cells was higher; the changes in various indicators in the metformin group were opposite to those in the curcumin group. Compared with the curcumin group, the activity of T24 cells, relative number of autophagosomes, migration rate, p-LKB1/LKB1, p-AMPK/AMPK, LC3II/LC3I, and the DDP resistance coefficient of T24/DDP cells in the combination group of curcumin and metformin were higher, and the apoptosis rate of T24 cells was lower. Compared with the control group, there were no obvious changes in various indicators of T24/DDP cells in the DDP group. Compared with the control group and DDP group, the viability of T24/DDP cells, relative number of autophagosomes, migration rate, P-glycoprotein (P-gp) protein expression, p-LKB1/LKB1, p-AMPK/AMPK, and LC3II/LC3I in the combination group of DDP and curcumin were lower, and the apoptosis rate of T24/DDP cells was higher; the changes in the above indicators in the combination group of DDP and metformin were opposite to those in the combination group of DDP and curcumin. Compared with the combination group of DDP and curcumin, the viability of T24/DDP cells, relative number of autophagosomes, migration rate, P-gp protein expression, p-LKB1/LKB1, p-AMPK/AMPK, and LC3II/LC3I in the combination group of DDP, curcumin and metformin were higher, and the apoptosis rate of T24/DDP cells was lower. Conclusion Curcumin can reduce the activity of LKB1-AMPK-LC3 signaling pathway, thereby inhibiting autophagy, proliferation and migration of bladder cancer cells, promoting their apoptosis, and weakening their resistance to DDP.

Download full-text PDF

Source

Publication Analysis

Top Keywords

t24/ddp cells
52
combination group
32
t24 cells
28
group
28
group ddp
28
ddp curcumin
28
cells
24
control group
24
curcumin metformin
24
curcumin
22

Similar Publications

[Impacts of curcumin on proliferation, migration and cisplatin resistance of bladder cancer cells by regulating LKB1-AMPK-LC3 signaling pathway].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

January 2025

National Key Laboratory of Bioreactors, School of Biological Engineering, East China University of Science and Technology, Shanghai 200237, China. *Corresponding author, E-mail:

Article Synopsis
  • The study investigates how curcumin affects bladder cancer cells regarding growth, movement, and resistance to cisplatin (a chemotherapy drug) by targeting a specific signaling pathway (LKB1-AMPK-LC3).
  • Human bladder cancer cells (T24) and their cisplatin-resistant counterparts (T24/DDP) were treated with varying concentrations of curcumin, and various assays measured cell proliferation, migration, autophagy, and apoptosis.
  • Results showed that curcumin, especially when combined with metformin, influences these cellular functions and could reduce drug resistance, affecting the expression of proteins in the targeted signaling pathway.
View Article and Find Full Text PDF

While cisplatin remains a frontline treatment for bladder cancer (BCa), the onset of resistance greatly hampers its effectiveness. RAC3 is closely linked to chemoresistance in cancer cells, but its specific role in cisplatin resistance within BCa is still elusive. RAC3 expression in BCa was analyzed using bioinformatics and quantitative polymerase chain reaction (qPCR).

View Article and Find Full Text PDF

Objective: Bladder cancer (BC) is primarily treated with cisplatin-based chemotherapy, but the development of cisplatin resistance often leads to BC recurrence. This study is focused on assessing the potential of gambogic acid (GA) in mitigating BC cells' cisplatin resistance, along with an analysis of the underlying mechanism involved.

Methods: Cisplatin was administered to human bladder transitional cell carcinoma cells (T24) at various concentration gradients to induce cisplatin-resistant (T24-DDP) cells.

View Article and Find Full Text PDF

PAX2 mediated upregulation of ESPL1 contributes to cisplatin resistance in bladder cancer through activating the JAK2/STAT3 pathway.

Naunyn Schmiedebergs Arch Pharmacol

September 2024

Department of Urology, Tangdu Hospital, the Air Force Medical University, 1 Xinsi Road, Baqiao District, Xi'an, 710038, Shannxi Province, China.

Article Synopsis
  • ESPL1, a protein linked to various cancers including bladder cancer, was found to be overexpressed in both tumor tissues and cisplatin-resistant bladder cancer cells.
  • Silencing ESPL1 significantly improved the sensitivity of resistant T24 cells to cisplatin, promoting cell apoptosis and reducing tumor growth, particularly when combined with cisplatin treatment.
  • PAX2 was identified as a regulator of ESPL1 expression, suggesting that the PAX2-ESPL1 interaction activates the JAK2/STAT3 signaling pathway, contributing to chemoresistance in bladder cancer.
View Article and Find Full Text PDF

Autophagy-dependent cisplatin resistance poses a challenge in bladder cancer treatment. SIRT1, a protein deacetylase, is involved in autophagy regulation. However, the precise mechanism through which SIRT1 mediates cisplatin resistance in bladder cancer via autophagy remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!