AI Article Synopsis

  • This study investigates how metabolic profiles change in patients with patent foramen ovale (PFO) and migraines before and after surgery, using metabolomics techniques.
  • Significant differences in metabolites like linoleic acid and quinolinic acid were observed after surgery, indicating potential diagnostic markers for these patients.
  • The research highlights the importance of metabolic pathways related to inflammation and oxidative stress in understanding migraines associated with PFO.

Article Abstract

Objective: This study aims to examine the changes in metabolic profiles in patients with patent foramen ovale (PFO) and migraine, as well as in patients with isolated migraine, before and after surgical intervention using metabolomics.

Methods: Patients were categorized into four groups: the simple migraine (SM) group, the PFO with migraine preoperative group (PRE), the PFO with migraine postoperative Day 3 group (POST_3d), and the PFO with migraine postoperative Day 30 group (POST_30d). Untargeted metabolomics using liquid chromatography-mass spectrometry (LC-MS) were employed to identify differential metabolites across these groups. Differential metabolites were identified, their clinical diagnostic value was assessed, and a correlation analysis was conducted to examine changes in metabolic pathways before and after surgery.

Results: The expression levels of metabolites such as linoleic acid, quinolinic acid, homophenylalanine, and amphetamine showed significant changes in patients with PFO and migraine following surgery. Notably, linoleic acid demonstrated strong diagnostic potential for this patient population. Trend analysis revealed that the levels of 3-phenylpropionic acid and caffeine decreased on postoperative Day 3 and subsequently increased by postoperative Day 30, whereas gallic acid continuously declined. Compared to the PRE group, differential metabolites in the SM group were primarily associated with α-linolenic acid metabolism, niacin and nicotinamide metabolism, sphingolipid signaling, and tyrosine metabolism. In contrast, differential metabolites in the POST_3d group were predominantly enriched in phenylalanine metabolism, niacin and nicotinamide metabolism, protein digestion and absorption, and caffeine metabolism.

Conclusion: Linoleic acid may serve as a potential biomarker, and the activation of inflammation and oxidative stress-related pathways could contribute significantly to the development of complicated migraine in patients with PFO.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.9972DOI Listing

Publication Analysis

Top Keywords

pfo migraine
20
postoperative day
16
differential metabolites
16
linoleic acid
12
migraine
9
patients patent
8
patent foramen
8
foramen ovale
8
liquid chromatography-mass
8
chromatography-mass spectrometry
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!