The growing number of connected devices in smart home environments has amplified security risks, particularly from Man-in-the-Middle (MitM) attacks. These attacks allow cybercriminals to intercept and manipulate communication streams between devices, often remaining undetected. Traditional rule-based methods struggle to cope with the complexity of these attacks, creating a need for more advanced, adaptive intrusion detection systems. This research introduces the AEXB Model, a hybrid deep learning approach that combines the feature extraction capabilities of an AutoEncoder with the classification power of XGBoost. By combining these complementary methods, the model enhances detection accuracy and significantly reduces false positives. The AEXB Model's methodology encompasses robust preprocessing steps, including data cleaning, scaling, and dimensionality reduction, followed by comprehensive feature engineering and selection techniques, such as Recursive Feature Elimination (RFE) and correlation analysis. By applying this approach to the Intrusion Detection in Smart Home (IDSH) dataset, the model achieves an impressive 97.24% accuracy, demonstrating its effectiveness in identifying anomalous network behavior indicative of MitM attacks. Additionally, the model's real-time detection capabilities allow for rapid responses to threats, thus providing continuous protection in dynamic smart home environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41598-025-85547-5 | DOI Listing |
Sci Rep
January 2025
School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
This paper introduces a novel method for spleen segmentation in ultrasound images, using a two-phase training approach. In the first phase, the SegFormerB0 network is trained to provide an initial segmentation. In the second phase, the network is further refined using the Pix2Pix structure, which enhances attention to details and corrects any erroneous or additional segments in the output.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electronics and Communication Engineering, Panimalar Engineering College, Chennai, India.
J Colloid Interface Sci
January 2025
School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China. Electronic address:
Defect engineering is considered one of the most powerful strategies for regulating the catalytic activity of electrocatalysts. A deep understanding of the defect-involved mechanism in electrocatalytic process is of great importance but remains a challenging task. In this study, an anionic Se-vacancy (V) was introduced into iron diselenide (FeSe) nanoarrays, enabling the catalyst to exhibit improved electrocatalytic performance for sulfion oxidation reaction (SOR).
View Article and Find Full Text PDFSensors (Basel)
January 2025
College of Resources and Environment, Shanxi University of Finance and Economics, Taiyuan 030006, China.
The Loess Plateau in northwest China features fragmented terrain and is prone to landslides. However, the complex environment of the Loess Plateau, combined with the inherent limitations of convolutional neural networks (CNNs), often results in false positives and missed detection for deep learning models based on CNNs when identifying landslides from high-resolution remote sensing images. To deal with this challenge, our research introduced a CNN-transformer hybrid network.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan.
Person identification is a critical task in applications such as security and surveillance, requiring reliable systems that perform robustly under diverse conditions. This study evaluates the Vision Transformer (ViT) and ResNet34 models across three modalities-RGB, thermal, and depth-using datasets collected with infrared array sensors and LiDAR sensors in controlled scenarios and varying resolutions (16 × 12 to 640 × 480) to explore their effectiveness in person identification. Preprocessing techniques, including YOLO-based cropping, were employed to improve subject isolation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!