AI Article Synopsis

  • The increasing use of connected devices in smart homes has heightened security risks, particularly from Man-in-the-Middle (MitM) attacks, which can go undetected.
  • Traditional security methods struggle to manage these complex threats, highlighting the need for more advanced intrusion detection systems.
  • The AEXB Model, a hybrid deep learning approach combining AutoEncoder for feature extraction and XGBoost for classification, achieves 97.24% accuracy in detecting MitM attacks, while also enabling real-time threat responses and continuous protection.

Article Abstract

The growing number of connected devices in smart home environments has amplified security risks, particularly from Man-in-the-Middle (MitM) attacks. These attacks allow cybercriminals to intercept and manipulate communication streams between devices, often remaining undetected. Traditional rule-based methods struggle to cope with the complexity of these attacks, creating a need for more advanced, adaptive intrusion detection systems. This research introduces the AEXB Model, a hybrid deep learning approach that combines the feature extraction capabilities of an AutoEncoder with the classification power of XGBoost. By combining these complementary methods, the model enhances detection accuracy and significantly reduces false positives. The AEXB Model's methodology encompasses robust preprocessing steps, including data cleaning, scaling, and dimensionality reduction, followed by comprehensive feature engineering and selection techniques, such as Recursive Feature Elimination (RFE) and correlation analysis. By applying this approach to the Intrusion Detection in Smart Home (IDSH) dataset, the model achieves an impressive 97.24% accuracy, demonstrating its effectiveness in identifying anomalous network behavior indicative of MitM attacks. Additionally, the model's real-time detection capabilities allow for rapid responses to threats, thus providing continuous protection in dynamic smart home environments.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-025-85547-5DOI Listing

Publication Analysis

Top Keywords

hybrid deep
8
deep learning
8
real-time detection
8
smart environments
8
mitm attacks
8
intrusion detection
8
detection
5
attacks
5
harnessing advanced
4
advanced hybrid
4

Similar Publications

This paper introduces a novel method for spleen segmentation in ultrasound images, using a two-phase training approach. In the first phase, the SegFormerB0 network is trained to provide an initial segmentation. In the second phase, the network is further refined using the Pix2Pix structure, which enhances attention to details and corrects any erroneous or additional segments in the output.

View Article and Find Full Text PDF
Article Synopsis
  • The increasing use of connected devices in smart homes has heightened security risks, particularly from Man-in-the-Middle (MitM) attacks, which can go undetected.
  • Traditional security methods struggle to manage these complex threats, highlighting the need for more advanced intrusion detection systems.
  • The AEXB Model, a hybrid deep learning approach combining AutoEncoder for feature extraction and XGBoost for classification, achieves 97.24% accuracy in detecting MitM attacks, while also enabling real-time threat responses and continuous protection.
View Article and Find Full Text PDF

Defect engineering is considered one of the most powerful strategies for regulating the catalytic activity of electrocatalysts. A deep understanding of the defect-involved mechanism in electrocatalytic process is of great importance but remains a challenging task. In this study, an anionic Se-vacancy (V) was introduced into iron diselenide (FeSe) nanoarrays, enabling the catalyst to exhibit improved electrocatalytic performance for sulfion oxidation reaction (SOR).

View Article and Find Full Text PDF

The Loess Plateau in northwest China features fragmented terrain and is prone to landslides. However, the complex environment of the Loess Plateau, combined with the inherent limitations of convolutional neural networks (CNNs), often results in false positives and missed detection for deep learning models based on CNNs when identifying landslides from high-resolution remote sensing images. To deal with this challenge, our research introduced a CNN-transformer hybrid network.

View Article and Find Full Text PDF

A Comparison Study of Person Identification Using IR Array Sensors and LiDAR.

Sensors (Basel)

January 2025

Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan.

Person identification is a critical task in applications such as security and surveillance, requiring reliable systems that perform robustly under diverse conditions. This study evaluates the Vision Transformer (ViT) and ResNet34 models across three modalities-RGB, thermal, and depth-using datasets collected with infrared array sensors and LiDAR sensors in controlled scenarios and varying resolutions (16 × 12 to 640 × 480) to explore their effectiveness in person identification. Preprocessing techniques, including YOLO-based cropping, were employed to improve subject isolation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!