The red king crab, Paralithodes camtschaticus, and the Japanese mitten crab, Eriocheir japonica, are the major commercially valuable species. In addition to their high nutritional value, these crabs are used as objects of ecological research. To extend our knowledge of crustacean biochemistry and provide a more comprehensive model of lipidomic patterns during embryonic and larval development of these crab species, we studied the dynamics of molecular species profiles of reserve lipids such as triacylglycerols (TG) and membrane lipids such as glycerophospholipids (PL). A complete disappearance of TG was observed in zoea IV larvae of E. japonica and zoea III larvae of P. camtschaticus. The appearance of TG at older stages of larval development was accompanied by considerable changes in TG composition. The dynamics of PL with major polyunsaturated fatty acids (PUFA) (20:5n-3, 22:6n-3, and 20:4n-3) during the larval development was species-specific. The obtained results indicate different demands for PUFA in P. camtschaticus and E. japonica, which can be taken into account when selecting optimum diets. The lipidomic approach allows identifying new patterns of lipid changes during crab embryonic development, which may be useful for improvement of aquaculture techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41598-025-85901-7 | DOI Listing |
STAR Protoc
January 2025
Laboratory of Developmental Neurobiology, International Institute of Molecular Mechanisms and Machines, 02-247 Warsaw, Poland; Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland. Electronic address:
Mechanistic target of rapamycin complex 1 (mTorC1) activity plays a crucial role in brain development. Here, we present an approach for rapamycin microinjection into the habenula of larval zebrafish to achieve localized inhibition of the mTorC1 pathway and explore the role of mTorC1 in habenula function. We describe steps for performing microinjections and maintaining zebrafish larvae before and after the procedure.
View Article and Find Full Text PDFSci Rep
January 2025
A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russia.
J Biol Chem
January 2025
Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, China. Electronic address:
Lipophagy is a way to degrade lipids; however, the molecular mechanisms are not fully understood. Using the holometabolous lepidopteran insect Helicoverpa armigera, cotton bollworm, as a model, we revealed that the larval fat body undergoes lipophagy during metamorphosis, and lipophagy is essential for metamorphosis. The steroid hormone 20-hydroxyecdysone (20E) induced lipophagy by promoting the expression of the peptide hormone adipokinetic hormone (AKH, the insect analog of glucagon) and the adipokinetic hormone receptor (AKHR).
View Article and Find Full Text PDFEnviron Toxicol Chem
January 2025
Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.
Microplastics (< 5 mm) are a diverse class of contaminants ranging in morphology, polymer type, and chemical cocktail. Microplastic toxicity can be driven by one or a combination of these characteristics. Most studies, however, evaluate the physical effect of the most commercially available polymers.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgssons Gate 1, 7491 Trondheim, Norway; Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway. Electronic address:
The brain uses a specialized system to transport cerebrospinal fluid (CSF), consisting of interconnected ventricles lined by motile ciliated ependymal cells. These cells act jointly with CSF secretion and cardiac pressure gradients to regulate CSF dynamics. To date, the link between cilia-mediated CSF flow and brain function is poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!