AI Article Synopsis

  • Straw degradation is slow in cold environments, but a consortium of bacteria and fungi, named LHWA, was developed to enhance this process.
  • Under 4 °C, this consortium achieved a 55.52% straw weight loss in liquid fermentation after 30 days and 58.36% in solid fermentation after 60 days.
  • Transcriptomic analysis indicated that B. cereus, part of the consortium, enhances cold resistance by modifying cell membrane fluidity and increasing cold stress response proteins.

Article Abstract

Straw degradation was slow under low temperature environments. A cold-tolerant consortium LHWA was constructed by Bacillus cereus, Acinetobacter lwoffii, Penicillium griseofulvum, and Talaromyces funiculosus. The consortium and culture conditions were optimized. Under 4 °C cultivation, liquid fermentation showed a 55.52 % straw weight loss rate after 30 days with inoculum (8.4 %, w/v), peptone (0.4 %, w/v) and Fe concentration (0.06 %, w/v); solid fermentation showed 58.36 % straw weight loss rate after 60 days. According to transcriptomic analysis, the mechanism of cold resistance in B. cereus is to improve the fluidity of the cell membrane, including changing the composition of fatty acids, increasing the expression of cold stress response proteins and cold shock proteins. The constructed consortium LHWA significantly improved the straw degradation efficiency under cold environments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiosc.2024.12.004DOI Listing

Publication Analysis

Top Keywords

low temperature
8
straw degradation
8
consortium lhwa
8
straw weight
8
weight loss
8
loss rate
8
rate days
8
straw
5
efficient degradation
4
degradation corn
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!