Straw degradation was slow under low temperature environments. A cold-tolerant consortium LHWA was constructed by Bacillus cereus, Acinetobacter lwoffii, Penicillium griseofulvum, and Talaromyces funiculosus. The consortium and culture conditions were optimized. Under 4 °C cultivation, liquid fermentation showed a 55.52 % straw weight loss rate after 30 days with inoculum (8.4 %, w/v), peptone (0.4 %, w/v) and Fe concentration (0.06 %, w/v); solid fermentation showed 58.36 % straw weight loss rate after 60 days. According to transcriptomic analysis, the mechanism of cold resistance in B. cereus is to improve the fluidity of the cell membrane, including changing the composition of fatty acids, increasing the expression of cold stress response proteins and cold shock proteins. The constructed consortium LHWA significantly improved the straw degradation efficiency under cold environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiosc.2024.12.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!