FXR-ApoC2 pathway activates UCP1-mediated thermogenesis by promoting the browning of white adipose tissues.

J Biol Chem

Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 02447, Seoul, Korea; Department of Pharmacology, College of Korean Medicine, Kyung Hee University, 02447, Seoul, Korea; Kyung Hee Institute of Convergence Korean Medicine, Kyung Hee University, 02447, Seoul, Korea. Electronic address:

Published: January 2025

FXR, encoded by Nh1r4, is a nuclear receptor crucial in regulating bile acid, lipid, and glucose metabolism. Prior research has indicated that activating FXR in the liver and small intestine may offer protection against obesity and metabolic diseases. This study demonstrates the essential role of the FXR-ApoC2 pathway in promoting the browning of white adipose tissue (WAT). Increased FXR by treatment with the FXR agonist farnesol upregulated beige adipocyte markers, including UCP1, PGC1α, and PRDM16, and increased the FXR target gene, ApoC2, in beige adipocytes and cold-exposed mice. However, these effects were not observed in mature white adipocytes. Remarkably, the knockdown of FXR results in a significantly reduced expression of UCP1, PGC1α, PRDM16, and ApoC2 in beige adipocytes. While studying the interaction between the nuclear receptor RXRα and FXR in transcription regulation, it was found that the knockdown of RXRα did not control the expression of FXR under beige adipogenesis. We further investigated whether the expression of beige-related markers could be altered under ApoC2 overexpression to ascertain the mechanism of action of FXR in relation to ApoC2 regulation. The overexpression of ApoC2 in both preadipocytes and beige adipocytes led to a significant increase in the expression of UCP1 and PGC1α. These results indicate that the FXR-mediated ApoC2 pathway is essential in the browning of WAT by inducing beige adipogenesis from preadipocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbc.2025.108181DOI Listing

Publication Analysis

Top Keywords

ucp1 pgc1α
12
beige adipocytes
12
fxr
9
fxr-apoc2 pathway
8
promoting browning
8
browning white
8
white adipose
8
nuclear receptor
8
increased fxr
8
pgc1α prdm16
8

Similar Publications

Objective: This study aimed to evaluate the effects of different cold acclimation strategies on exercise performance in male mice exposed to low-temperature environments.

Methods: Male mice were subjected to five distinct acclimation regimens over 8 weeks: immersion at 10 °C (10 °CI) or 20 °C (20 °CI), swimming at 10 °C (10 °CS), 20 °C (20 °CS), or 34 °C (34 °CS). During the first 2 weeks, the acclimation time progressively decreased from 30 min to 3 min per day, and the water temperatures were lowered from 34 °C to the target levels, followed by 6 weeks of consistent exposure.

View Article and Find Full Text PDF

The present study explored the possible antiobesogenic and osteoprotective properties of the gut metabolite ginsenoside CK to clarify its influence on lipid and atherosclerosis pathways, thereby validating previously published hypotheses. These hypotheses were validated by harvesting and cultivating 3T3-L1 and MC3T3-E1 in adipogenic and osteogenic media with varying concentrations of CK. We assessed the differentiation of adipocytes and osteoblasts in these cell lines by applying the most effective doses of CK that we initially selected.

View Article and Find Full Text PDF

Genomic and transcriptomic insights into vitamin A-induced thermogenesis and gene reuse as a cold adaptation strategy in wild boars.

Commun Biol

January 2025

National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P.R. China.

Wild boars inhabit diverse climates, including frigid regions like Siberia, but their migration history and cold adaptation mechanisms into high latitudes remain poorly understood. We constructed the most comprehensive wild boar whole-genome variant dataset to date, comprising 124 samples from tropical to frigid zones, among which 47 Russian, 8 South Chinese and 3 Vietnamese wild boars were newly supplemented. We also gathered 75 high-quality RNA-seq datasets from 10 tissues of 6 wild boars from Russia and 6 from southern China.

View Article and Find Full Text PDF

Homeobox C4 transcription factor promotes adipose tissue thermogenesis.

Diabetes

January 2025

Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.

The homeobox (HOX) family has shown potential in adipose development and function, yet the specific HOX proteins fueling adipose thermogenesis remain elusive. In this study, we uncovered the novel function of HOXC4 in stimulating adipose thermogenesis. Our bioinformatic analysis indicated an enrichment of Hoxc4 co-expressed genes in metabolic pathways and linked HOXC4 polymorphisms to metabolic parameters, suggesting its involvement in metabolic regulation.

View Article and Find Full Text PDF

Aims: Thermogenic adipocytes are able to dissipate energy as heat from lipids and carbohydrates through enhanced uncoupled respiration, due to UCP1 activity. PPAR family of transcription factors plays an important role in adipocyte biology. The purpose of this work was to characterize the role of PPARα and pemafibrate in the control of thermogenic adipocyte formation and function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!