Human α10 nicotinic acetylcholine receptor subunits assemble to form functional receptors.

J Biol Chem

School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA; Department of Psychiatry, University of Utah, Salt Lake City, Utah, USA; George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah, USA.

Published: January 2025

Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels. In mammals, there are 16 individual nAChR subunits allowing for numerous possible heteromeric compositions. nAChRs assembled from α7 or α9 subunits will form as homopentamers. In contrast, the structurally related α10 nAChR subunit has historically been thought to require α9 subunits for function. Recently, however, strychnine was shown to enable expression of human α10 nAChRs in Xenopus laevis oocytes or mammalian cells, prompting a re-examination of whether the human α10 subunit can self-assemble in the absence of strychnine. In the present study, acetylcholine-evoked ionic currents were obtained by co-expression of human α10 nAChR subunits with the transmembrane protein resistance to inhibitors of cholinesterase-3 (RIC-3) in Xenopus oocytes. Furthermore, creation of a gain-of-function reporter mutation, V13'T, in the second transmembrane domain demonstrated that α10 subunits can self-assemble in the presence or absence of RIC-3. The antagonist sensitivity of the homomeric α10 nAChR is distinct from that of the closely related α7 and α9α10 subtypes. α10 homomers were blocked by α-bungarotoxin but were insensitive to α-conotoxin [V11L;V16D]ArIB and RgIA-5474, which potently block α7 nAChRs and α9α10 nAChRs, respectively. These studies yield insight into the assembly of functional human α10 homomers and provide tools for the development of α10 -nAChR-selective ligands.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbc.2025.108182DOI Listing

Publication Analysis

Top Keywords

human α10
20
α10 nachr
12
α10
9
nicotinic acetylcholine
8
nachr subunits
8
α9 subunits
8
α10 homomers
8
subunits
6
human
5
nachrs
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!