Roles of N-methyladenosine in LncRNA changes and oxidative damage in cadmium-induced pancreatic β-cells.

Toxicology

School of Public Health, Dali University, Dali, Yunnan, China; Institute of Preventive Medicine, Dali University, Dali, Yunnan, China. Electronic address:

Published: January 2025

N-methyladenosine (mA) modification and LncRNAs play crucial regulatory roles in various pathophysiological processes, yet roles of mA modification and the relationship between mA modification and LncRNAs in cadmium-induced oxidative damage of pancreatic β-cells have not been fully elucidated. In this study, mA agonist entacapone and inhibitor 3-deazadenosine were used to identify the effects of mA on cadmium-induced oxidative damage as well as LncRNA changes. Our results indicate that elevated levels of mA modification by entacapone can rescue the cell viability and attenuate the cell apoptosis, while the inhibition levels of mA modification can exacerbate the cell death. Furthermore, the elevation of mA modification can recover cadmium-induced oxidative damage to pancreatic β-cells, which characterized as inhibition the ROS accumulation, MDA contents, protein expressions of Nrf2 and Ho-1, while elevation the expressions of Sod1 and Gclc. On the contrary, the reduction levels of mA modification can exacerbate the cadmium-induced oxidative damage. More importantly, six significantly differentially expressed LncRNAs were selected according to our preliminary sequencing data (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE253072) and there is a clear correlation between the levels of these LncRNAs and mA modification after cadmium treatment. Interestingly, the intervention of mA modification levels can significantly affect the levels of these LncRNAs. In detail, the stimulation of mA modification reversed the changes of cadmium-induced LncRNAs, while the mA modification inhibition can significantly exacerbate the changes of cadmium-induced LncRNAs. In conclusion, our data revealed critical roles of mA modification in cadmium-induced LncRNAs and oxidative damage. Our findings point to a new direction for future studies on the molecular mechanisms of pancreatic β-cell damage induced by cadmium.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tox.2025.154053DOI Listing

Publication Analysis

Top Keywords

oxidative damage
24
cadmium-induced oxidative
16
pancreatic β-cells
12
modification
12
levels modification
12
cadmium-induced lncrnas
12
lncrna changes
8
cadmium-induced
8
lncrnas
8
modification lncrnas
8

Similar Publications

Background: This study tested the hypothesis that extracorporeal shockwave therapy (ECSWT) effectively rescues critical limb ischemia (CLI) in mice through the upregulation of GPR120, which protects against inflammation and angiogenesis to restore blood flow in the ischemic area.

Methods And Results: Compared with the control, ECSWT-induced GPR120-mediated anti-inflammatory effects significantly suppressed the expression of inflammatory signaling biomarkers (TAK1/MAPK family/NF-κB/IL-1β/IL-6/TNF-α/MCP-1) in HUVECs, and these effects were abolished by silencing GPR120 or by the GPR120 antagonist AH7614 (all P < 0.001).

View Article and Find Full Text PDF

Induction of M1 polarization in BV2 cells by propofol intervention promotes perioperative neurocognitive disorders through the NGF/CREB signaling pathway: an experimental research.

Int J Surg

January 2025

Department of Anesthesiology, Jiangxi Cancer Hospital & Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Key Laboratory of Oncology, Nanchang, Jiangxi Province, China.

Nerve growth factor (NGF) is critical in regulating the homeostasis of microglial cells. It activates various signaling pathways that mediate the phosphorylation of cAMP response element-binding protein (CREB) at key regulatory sites. The decrease in phosphorylated CREB (p-CREB) expression is linked to neuroinflammatory responses.

View Article and Find Full Text PDF

Background: Epilepsy, a neurological disorder characterized by recurrent seizures, presents considerable difficulties in treatment, particularly when dealing with drug-resistant cases. Dapsone, recognized for its anti-inflammatory properties, holds promise as a potential therapeutic option. However, its effectiveness in epilepsy requires further investigation.

View Article and Find Full Text PDF

Glioprotective Effects of Resveratrol Against Glutamate-Induced Cellular Dysfunction: The Role of Heme Oxygenase 1 Pathway.

Neurotox Res

January 2025

Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.

Resveratrol, a natural polyphenol, has shown promising neuroprotective effects in several in vivo and in vitro experimental models. However, the mechanisms by which resveratrol mediates these effects are not fully understood. Glutamate is the major excitatory neurotransmitter in the brain; however, excessive extracellular glutamate levels can affect neural activity in several neurological diseases.

View Article and Find Full Text PDF

Chlorpyrifos (CPF) is an organophosphorus pesticide of concern because many in vivo animal studies have demonstrated developmental toxicity exerted by this substance; however, despite its widespread use, evidence from epidemiological studies is still limited. In this study, we have collected all the information generated in the twenty-first century on the developmental toxicity of CPF using new approach methodologies. We have critically evaluated and integrated information coming from 70 papers considering human, rodent, avian and fish models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!