AI Article Synopsis

  • Response inhibition is crucial for cognitive function, with key brain regions involved being the presupplementary motor area (preSMA) and the right inferior frontal cortex (rIFC), though their specific roles are debated.
  • Using fMRI, this study examined how these regions contribute to stopping responses during tasks designed to measure inhibitory control, specifically the Go/No-Go task and the Stop Signal Task.
  • Findings indicated that the rIFC is linked to pausing responses, while the preSMA is more directly involved in stopping responses effectively, supporting the Pause-then-Cancel Model.

Article Abstract

Response inhibition is an essential component of cognitive function. A large body of literature has used neuroimaging data to uncover the neural architecture that regulates inhibitory control in general and movement cancelation. The presupplementary motor area (preSMA) and the right inferior frontal cortex (rIFC) are the key nodes in the inhibitory control network. However, how these two regions contribute to response inhibition remains controversial. Based on the Pause-then-Cancel Model (PTC), this study employed functional magnetic resonance imaging (fMRI) to investigate the functional specificity of two regions in the stopping process. The Go/No-Go task (GNGT) and the Stop Signal Task (SST) were administered to the same group of participants. We used the GNGT to dissociate the pause process and both the GNGT and the SST to investigate the inhibition mechanism. Imaging data revealed that response inhibition produced by both tasks activated the preSMA and rIFC. Furthermore, an across-participants analysis showed that increased activation in the rIFC was associated with a delay in the go response in the GNGT. In contrast, increased activation in the preSMA was associated with good inhibition efficiency via the striatum in both GNGT and SST. These behavioral and imaging findings support the PTC model of the role of rIFC and preSMA, that the former is involved in a pause process to delay motor responses, whereas the preSMA is involved in the stopping of motor responses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2025.121004DOI Listing

Publication Analysis

Top Keywords

response inhibition
16
inferior frontal
8
frontal cortex
8
ptc model
8
inhibitory control
8
pause process
8
gngt sst
8
increased activation
8
presma involved
8
motor responses
8

Similar Publications

Introduction/objectives: Sjogren's syndrome (SS) is a chronic inflammatory and difficult-to-treat autoimmune disease. Timosaponin AIII (TAIII), a plant-derived steroidal saponin, effectively inhibits cell proliferation, induces apoptosis, and exhibits anti-inflammatory properties. This study explored the mechanisms of action of TAIII in SS treatment by studying gut microbiota and short-chain fatty acids (SCFAs) using fecal metabolomics.

View Article and Find Full Text PDF

Therapeutic potential of Bacillus-derived lipopeptides in controlling enteropathogens and modulating immune responses to mitigate post-weaning diarrhea in swine.

Vet Res Commun

January 2025

Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta N 36 Km 601, Río Cuarto City, 5800, Córdoba, Argentina.

Post-weaning diarrhea (PWD) is a major concern for pig producers, as stress and early weaning increase susceptibility to enteropathogens like enterotoxigenic Escherichia coli (ETEC) and Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium).

View Article and Find Full Text PDF

IL-7 secreted by keratinocytes induces melanogenesis via c-kit/MAPK signaling pathway in Melan-a melanocytes.

Arch Dermatol Res

January 2025

Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Youngin, 17104, Republic of Korea.

Abnormal melanin synthesis within melanocytes can result in pigmentary skin disorders. Although pigmentation alterations associated with inflammation are frequently observed, the precise reason for this clinical observation is still unknown. More specifically, although many cytokines are known to be critical for inflammatory skin processes, it is unclear how they affect epidermal melanocyte function.

View Article and Find Full Text PDF

We have recently shown that fluoxetine (FX) suppressed polyinosinic-polycytidylic acid-induced inflammatory response and endothelin release in human epidermal keratinocytes, via the indirect inhibition of the phosphoinositide 3-kinase (PI3K)-pathway. Because PI3K-signaling is a positive regulator of the proliferation, in the current, highly focused follow-up study, we assessed the effects of FX (14 µM) on the proliferation and differentiation of human epidermal keratinocytes. We found that FX exerted anti-proliferative actions in 2D cultures (HaCaT and primary human epidermal keratinocytes [NHEKs]; 48- and 72-h; CyQUANT-assay) as well as in 3D reconstructed epidermal equivalents (48-h; Ki-67 immunohistochemistry).

View Article and Find Full Text PDF

Disentangling the neural underpinnings of response inhibition in disruptive behavior and co-occurring ADHD.

Eur Child Adolesc Psychiatry

January 2025

Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.

While impaired response inhibition has been reported in attention-deficit/hyperactivity disorder (ADHD), findings in disruptive behavior disorders (DBDs) have been inconsistent, probably due to unaccounted effects of co-occurring ADHD in DBD. This study investigated the associations of behavioral and neural correlates of response inhibition with DBD and ADHD symptom severity, covarying for each other in a dimensional approach. Functional magnetic resonance imaging data were available for 35 children and adolescents with DBDs (8-18 years old, 19 males), and 31 age-matched unaffected controls (18 males) while performing a performance-adjusted stop-signal task.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!