AI Article Synopsis

  • The study investigates the neurobiological factors that make individuals susceptible to fatigue after a mild COVID-19 infection, aiming to understand the link between brain structure and post-COVID neuropsychiatric symptoms.
  • Researchers used neuropsychiatric assessments and MRI scans on individuals who had COVID-19 and a control group to analyze brain regions related to fatigue.
  • Results indicate that specific brain areas, particularly the right dorsolateral prefrontal cortex, are linked to fatigue severity and can predict ongoing fatigue symptoms months after the infection, shedding light on the neural underpinnings of post-COVID conditions.

Article Abstract

Background: Fatigue is often accompanied by comorbid sleep disturbance and psychiatric distress following the COVID-19 infection. However, identifying individuals at risk for developing post-COVID fatigue remains challenging. This study aimed to identify the neurobiological markers underlying fatigue susceptibility and further investigate their effect on COVID-19-related neuropsychiatric symptoms.

Methods: Individuals following a mild SARS-CoV-2 infection (COV+) underwent neuropsychiatric measurements (n = 335) and MRI scans (n = 271) within 1 month (baseline), and 191 (70.5%) of the individuals were followed up 3 months after infection. Sixty-seven healthy controls (COV-) completed the same recruitment protocol.

Results: Whole-brain voxel-wise analysis showed that gray matter volume (GMV) during the acute phase did not differ between the COV+ and COV- groups. GMV in the right dorsolateral prefrontal cortex (DLPFC) and left dorsal anterior cingulate cortex (dACC) were associated with fatigue severity only in the COV+ group at baseline, which were assigned to the frontal system and limbic system, respectively. Furthermore, fatigue mediated the associations between volume differences in fatigue susceptibility and COVID-related sleep, post-traumatic stress disorder, anxiety and depression. Crucially, the initial GMV in the right DLPFC can predict fatigue symptoms 3 months after infection.

Conclusions: We provide novel evidence on the neuroanatomical basis of fatigue vulnerability and emphasize that acute fatigue is an important link between early GMV in the frontal-limbic regions and comorbid neuropsychiatric symptoms at baseline and 3 months after infection. Our findings highlight the role of the frontal-limbic system in predisposing individuals to develop post-COVID fatigue.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2025.121011DOI Listing

Publication Analysis

Top Keywords

fatigue susceptibility
12
fatigue
11
gray matter
8
matter volume
8
comorbid neuropsychiatric
8
neuropsychiatric symptoms
8
post-covid fatigue
8
months infection
8
association individual
4
individual gray
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!