Propyrisulfuron, a novel sulfonylurea herbicide, effectively suppresses intracellular acetolactate synthase activity for weed control, but its adsorption behavior in the soil environment remains unclear. To assess potential agroecosystem risks, the adsorption-desorption behavior and mechanism of propyrisulfuron in six typical agricultural soils of China were investigated using a batch equilibrium method, Density Functional Theory (DFT), Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscopy equipped with Energy Dispersive X-ray (SEM-EDX) techniques. It is indicated that the adsorption-desorption of propyrisulfuron in six soils reached equilibrium at 36 h under the optimum water-to-soil ratio (WSr) of 5:1. Adsorption kinetics followed the quasi-second-order kinetic model, while the Freundlich model best described the adsorption process at equilibrium. The adsorption and desorption were significantly and positively correlated with soil clay content, and 38 environmental factors had varying degrees of influence on its adsorption properties, especially those influenced by microplastics (MPs). Furthermore, the adsorption of propyrisulfuron in six soils was primarily a spontaneous, non-homogeneous, and non-ideal physical process, and special strong forces, such as hydrogen bonding might be involved. Consequently, due to its continuous application, potential persistent residues and pollution may occur in some soils. The investigations systematically reported the adsorption-desorption behavior of propyrisulfuron in various agricultural soils for the first time, providing scientific guidance for environmental risk assessment of groundwater pollution caused by its continuous application in agro-ecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2025.125653 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!