Background And Purpose: Few studies have examined the factors associated with xerostomia during proton and carbon ion radiotherapy for head and neck cancer (HNC), which are reported to have fewer toxic effects compared to traditional photon-based radiotherapy. This study aims to evaluate the performance of machine learning approaches in predicting grade 2 + xerostomia in adults with HNC receiving proton and carbon ion radiotherapy.
Materials And Methods: A retrospective study involving 1,769 adults with HNC who completed proton or carbon ion radiotherapy was conducted. Xerostomia was graded using the Radiation Therapy Oncology Group criteria. Eight machine learning models with different combinations sampling methods and class weights were compared to identify the model with the highest balanced accuracy.
Results: The mean age of patients was 47.8 years (range 18-80), with 33.5 % female. The average total radiation dose was 71.0 GyE (SD = 5.7). Grade 1 xerostomia was recorded in 572 patients (32.3 %) and grade 2 in 103 patients (5.8 %). No cases of grade 3 or higher xerostomia were reported. A support vector machine with a linear kernel, a 1:2 positive-to-negative class weight, and SMOTE oversampling achieved the highest balanced accuracy (0.66) and AUC-ROC (0.69) for predicting grade 2 xerostomia, outperforming the logistic regression model (balanced accuracy:0.50, AUC-ROC. 0.67).
Conclusion: The prevalence of grade 2 radiation-induced xerostomia during proton and carbon ion radiotherapy was low in adults with HNC, posing challenges for accurate prediction. Further research is needed to develop improved methods for predicting xerostomia during proton and carbon ion radiotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.radonc.2025.110712 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!