Exploring the mechanisms of Yang Wei Shu granule for the treatment of chronic atrophic gastritis using UPLC-QTOF-MS/MS, network pharmacology, and cell experimentation.

J Ethnopharmacol

College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012 Anhui, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012 Anhui, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012 Anhui, China; Anhui Engineering Research Center for Quality Improvement and Utilization of Genuine Chinese Medicinal Materials, Hefei 230012 Anhui, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012 Anhui, China. Electronic address:

Published: January 2025

AI Article Synopsis

  • YWSG is an herbal compound derived from ancient Chinese medicine used for treating chronic atrophic gastritis (CAG), which can lead to gastric cancer.
  • The study aims to identify the chemical composition of YWSG and understand its mechanisms of action through advanced analytical techniques and network pharmacology.
  • Results revealed 150 compounds in YWSG, with several target genes identified as potential therapeutic targets, and experiments indicated that YWSG does not harm certain immune cells while inhibiting nitric oxide production.

Article Abstract

Ethnopharmacological Relevance: Chronic atrophic gastritis (CAG) is a global disease of the digestive system and is an important precancerous lesion in the development of gastric cancer. Yang Wei Shu granule (YWSG), which evolved from the formula 'Warm Stomach Soup' of the Jin and Yuan Dynasties in China, is frequently used as a classic herbal compound in the treatment of CAG. However, the active ingredients and mechanisms by which it works are not clear.

Aim Of The Study: To elucidate the chemical composition of YWSG and investigate the potential mechanisms of YWSG on CAG by composition analysis, network pharmacology and cellular experimental studies.

Materials And Methods: The chemical and blood-entry constituents of YWSG were analyzed by ultra-high performance liquid chromatography-Quadrupole tandem time-of-flight mass spectrometry (UPLC-QTOF-MS/MS). Subsequently, potential targets of YWSG for CAG treatment were identified through utilization of publicly available online resources. The YWSG-component-target-pathway network and protein-protein interaction (PPI) network were constructed using Cytoscape software. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of potential targets was performed using the DAVID database. Finally, a cellular model of lipopolysaccharide (LPS)-activated RAW 264.7 macrophages was established and validated by in vitro experiments.

Results: A total of 150 compounds in YWSG and 47 blood-entry constituents were identified by using UPLC-QTOF-MS/MS. Based on network pharmacology, a total of 132 target genes were identified as being involved in the therapeutic effect of YWSG on CAG. Network pharmacology and molecular docking results suggest that AKT1, PIK3CA, PTPN11, SRC and STAT3 may be potential targets of YWSG for the treatment of CAG. Cellular experiments showed that the YWSG-containing serum had no cytotoxic effect on RAW264.7 cells and could inhibit nitric oxide (NO) production and the expression of pro-inflammatory factors TNF-α, IL-6, and IL-1β. Additionally, it was observed to promote the expression of the anti-inflammatory factor IL-10 in LPS-stimulated RAW264.7 cells. The immunofluorescence results showed that YWSG treated CAG by inhibiting the PI3K-Akt pathway.

Conclusions: The mechanism of action of YWSG on CAG was preliminarily elucidated using UPLC-Q-TOF-MS/MS, network pharmacology and in vitro experiments. The main active components and potential targets of YWSG were investigated, providing a scientific basis for further research.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2025.119326DOI Listing

Publication Analysis

Top Keywords

network pharmacology
20
ywsg cag
16
potential targets
16
targets ywsg
12
ywsg
11
yang wei
8
wei shu
8
shu granule
8
chronic atrophic
8
atrophic gastritis
8

Similar Publications

UniAMP: enhancing AMP prediction using deep neural networks with inferred information of peptides.

BMC Bioinformatics

January 2025

College of Artificial Intelligence, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, Jiangsu, China.

Antimicrobial peptides (AMPs) have been widely recognized as a promising solution to combat antimicrobial resistance of microorganisms due to the increasing abuse of antibiotics in medicine and agriculture around the globe. In this study, we propose UniAMP, a systematic prediction framework for discovering AMPs. We observe that feature vectors used in various existing studies constructed from peptide information, such as sequence, composition, and structure, can be augmented and even replaced by information inferred by deep learning models.

View Article and Find Full Text PDF

Chronic stress disrupts gut microbiota homeostasis, contributing to anxiety and depression. This study explored the effects of Limosilactobacillus reuteri fermented brown rice (FBR) on anxiety using an ICR mouse chronic mild stress (CMS) model. Anxiety was assessed through body weight, corticosterone levels, neurotransmitter profiles, and behavioral tests.

View Article and Find Full Text PDF

Strychni Semen is the dried ripe seeds of the plant Strychnos nux-vomica L, and has great medicinal value and developmental potential.However, Strychni Semen is severely toxic, with adverse effects on the central nervous system, urinary system, and other organ systems, and severe cases can be life-threatening. The present study was to reveal the mechanism of nephrotoxicity induced by Strychni Semen and its alkaloid components using experiments.

View Article and Find Full Text PDF

Background: Ginseng-Schisandra chinensis (GSC) decoction has shown good efficacy in the treatment of asthma, but its t mechanism in the treatment of asthma is still not fully understood.

Purpose: This study aims to elucidate the therapeutic mechanism of GSC for AS by identifying the active components of GSC.

Methods: The chemical composition of GSC was analyzed using UHPLC-MS/MS.

View Article and Find Full Text PDF

Exploring the mechanisms of Yang Wei Shu granule for the treatment of chronic atrophic gastritis using UPLC-QTOF-MS/MS, network pharmacology, and cell experimentation.

J Ethnopharmacol

January 2025

College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012 Anhui, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012 Anhui, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012 Anhui, China; Anhui Engineering Research Center for Quality Improvement and Utilization of Genuine Chinese Medicinal Materials, Hefei 230012 Anhui, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012 Anhui, China. Electronic address:

Article Synopsis
  • YWSG is an herbal compound derived from ancient Chinese medicine used for treating chronic atrophic gastritis (CAG), which can lead to gastric cancer.
  • The study aims to identify the chemical composition of YWSG and understand its mechanisms of action through advanced analytical techniques and network pharmacology.
  • Results revealed 150 compounds in YWSG, with several target genes identified as potential therapeutic targets, and experiments indicated that YWSG does not harm certain immune cells while inhibiting nitric oxide production.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!