pH-sensitive phthalocyanine-loaded polymeric nanoparticles as a novel treatment strategy for breast cancer.

Bioorg Chem

Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland; A. Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland. Electronic address:

Published: February 2025

Novel pH-sensitive polymeric photosensitizer carriers from the phthalocyanine (Pc) group were investigated as potential photodynamic therapy drugs for the treatment of breast cancer. Their high antiproliferative activity was confirmed by photocytotoxicity studies, which indicated their high efficacy and specificity toward the SK-BR-3 cell line. Importantly, the Pcs encapsulated in the polymeric nanoparticle (NP) carrier exhibited a much better penetration into the acidic environment of tumor cells than their free form. The investigated Pc4-NPs and TT1-NPs exhibited a high selectivity to healthy fibroblasts as well as non-toxicity without irradiation. This paper describes the detailed mechanism of action of the evaluated compounds by measuring reactive oxygen species (ROS), including singlet oxygen; imaging cellular localization; and analyzing key signaling pathway proteins. An additional advantage of the evaluated compounds is their ability to inhibit the Akt protein expression, including its phosphorylation, which the Western blot test confirmed. This is particularly important because breast cancers often overexpress the HER-2 receptor-related signaling proteins. Moreover, an analysis of proteins such as GLUT-1, HO-1, phospho-p42/44, and BID revealed the significant involvement of ROS in disrupting cellular homeostasis, thereby leading to the induction of oxidative stress and resulting in apoptotic cell death.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2025.108127DOI Listing

Publication Analysis

Top Keywords

breast cancer
8
evaluated compounds
8
ph-sensitive phthalocyanine-loaded
4
phthalocyanine-loaded polymeric
4
polymeric nanoparticles
4
nanoparticles novel
4
novel treatment
4
treatment strategy
4
strategy breast
4
cancer novel
4

Similar Publications

A Japanese woman with Li-Fraumeni syndrome in her 40s underwent comprehensive genetic profiling accompanied by germline data using the Oncoguide NCC Oncopanel, but no germline pathogenic variants in the tumor suppressor gene TP53 were detected. However, careful examination of additional data in the report suggested the presence of a large TP53 deletion. Custom targeting next-generation sequencing and nanopore sequencing revealed a 3.

View Article and Find Full Text PDF

Purpose: Standard therapy for breast cancer after breast-conserving surgery is radiation therapy (RT) plus hormone therapy (HT). For patients with a low-risk of recurrence, there is an interest in deescalating therapy.

Methods And Materials: A retrospective study was carried out for patients treated at the Swedish Cancer Institute from 2000 to 2015, aged 70 years or older, with pT1N0 or pT1NX estrogen receptor-positive and ERBB2-negative unifocal breast cancer without positive surgical margins, high nuclear grade, or lymphovascular invasion.

View Article and Find Full Text PDF

Introduction: To target psychological support to cancer patients most in need of support, screening for psychological distress has been advocated and, in some settings, also implemented. Still, no prior studies have examined the appropriate 'dosage' and whether screening for distress before cancer treatment may be sufficient or if further screenings during treatment are necessary. We examined the development in symptom trajectories for breast cancer patients with low distress before surgery and explored potential risk factors for developing burdensome symptoms at a later point in time.

View Article and Find Full Text PDF

Omega-3 fatty acids: molecular weapons against chemoresistance in breast cancer.

Cell Mol Biol Lett

January 2025

Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende, 87036, Cosenza, Italy.

Breast cancer is the most commonly diagnosed type of cancer and the leading cause of cancer-related death in women worldwide. Highly targeted therapies have been developed for different subtypes of breast cancer, including hormone receptor (HR)-positive and human epidermal growth factor receptor 2 (HER2)-positive breast cancer. However, triple-negative breast cancer (TNBC) and metastatic breast cancer disease are primarily treated with chemotherapy, which improves disease-free and overall survival, but does not offer a curative solution for these aggressive forms of breast cancer.

View Article and Find Full Text PDF

Nowadays, chemotherapy and immunotherapy remain the major treatment strategies for Triple-Negative Breast Cancer (TNBC). Identifying biomarkers to pre-select and subclassify TNBC patients with distinct chemotherapy responses is essential. In the current study, we performed an unbiased Reverse Phase Protein Array (RPPA) on TNBC cells treated with chemotherapy compounds and found a leading significant increase of phosphor-AURKA/B/C, AURKA, AURKB, and PLK1, which fall into the mitotic kinase group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!