The widespread use of nano titanium dioxide (nano-TiO₂) poses ecological risks to marine ecosystems, especially when combined with ocean warming. However, most previous studies have only examined water-related exposures, leaving a gap in research on the impact of food transfer on organisms. In this work, the harmful impacts of nano-TiO on the Japanese swimming crab Charybdis japonica were studied through three scenarios: direct exposure (DE) of the crabs to warming and nano-TiO, indirect exposure (IE) via consumption of thick-shelled mussels Mytilus coruscus exposed to the same conditions, and combined exposure (CE), where crabs were directly subjected to warming and nano-TiO while feeding affected mussels. Moreover, a control group was established, consisting of Japanese swimming crab C. japonica and mussel M. coruscus that were raised under standard temperature (22 °C) and 0 mg L nano-TiO concentration conditions. Immune, oxidative, and gene expression parameters were measured in gills and hepatopancreas after 7 exposure days. Furthermore, titanium bioaccumulation, along with the morphometrical and histological analyses, were assessed in gills. Bioaccumulation results (1.69-6.83 μg/g) suggested that foodborne stressors induced higher titanium contents. Additionally, there were deformities in gills morphometry and histology. The multivariate analyses showed that warming and nano-TiO combination had a pronounced effect on the overall profile of biological responses in crabs; moreover, the exposure through food alone had the greatest impact on gills immune-oxidative parameters and hepatopancreas gene expressions. The harmful impacts of nano-TiO are significant and can manifest through waterborne and dietary exposure pathways, especially when combined with other stressors, warranting further research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2025.137092 | DOI Listing |
J Hazard Mater
January 2025
International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China. Electronic address:
The widespread use of nano titanium dioxide (nano-TiO₂) poses ecological risks to marine ecosystems, especially when combined with ocean warming. However, most previous studies have only examined water-related exposures, leaving a gap in research on the impact of food transfer on organisms. In this work, the harmful impacts of nano-TiO on the Japanese swimming crab Charybdis japonica were studied through three scenarios: direct exposure (DE) of the crabs to warming and nano-TiO, indirect exposure (IE) via consumption of thick-shelled mussels Mytilus coruscus exposed to the same conditions, and combined exposure (CE), where crabs were directly subjected to warming and nano-TiO while feeding affected mussels.
View Article and Find Full Text PDFChemosphere
May 2024
International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China. Electronic address:
With the wide use of nanomaterials in daily life, nano-titanium dioxide (nano-TiO) presents potential ecological risks to marine ecosystems, which can be exacerbated by ocean warming (OW). However, most previous studies have only centered around waterborne exposure, while there is a scarcity of studies concentrating on the impact of trophic transfer exposure on organisms. We investigated the differences in toxic effects of 100 μg/L nano-TiO on mussels via two pathways (waterborne and foodborne) under normal (24 °C) and warming (28 °C) conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!