Rapid electrothermal upcycling hexachlorobutadiene (HCBD) polluted distillation residue into turbostratic graphene for enhanced electromagnetic wave absorption.

J Hazard Mater

Institute of Zhejiang University - Quzhou, No. 99 Zheda Road, Quzhou 324000, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China. Electronic address:

Published: January 2025

The trichloroethylene production industry generates high-boiling-point solid residues during rectification, which contain high concentrations of chlorinated contaminants, particularly hexachlorobutadiene (HCBD). Traditionally, these distillation residues are managed through co-incineration or landfilling, leading to environmental and economic challenges. In this study, we present a rapid and environmentally friendly electrothermal approach for both detoxifying and upcycling distillation residue into graphene-based electromagnetic wave (EMW) absorbing materials. By employing a DC power pulse discharge with a 10 s duration, we achieved over 99 % HCBD degradation efficiency. Characterization results indicate that the thermal shock transforms the distillation residue into high-value turbostratic pulse graphene (tPG). This tPG, featuring a unique structure, demonstrates substantial potential as an EMW absorber, with an effective absorption bandwidth of 3.9 GHz and a reflection loss of -42.0 dB at a minimal matching thickness of 1.6 mm. The method offers a sustainable, cost-effective solution for hazardous waste management, combining rapid processing with high-value material production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2025.137160DOI Listing

Publication Analysis

Top Keywords

distillation residue
12
hexachlorobutadiene hcbd
8
electromagnetic wave
8
rapid electrothermal
4
electrothermal upcycling
4
upcycling hexachlorobutadiene
4
hcbd polluted
4
distillation
4
polluted distillation
4
residue turbostratic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!