Modeling Optical Coherence Tomography (OCT) images is crucial for numerous image processing applications and aids ophthalmologists in the early detection of macular abnormalities. Sparse representation-based models, particularly dictionary learning (DL), play a pivotal role in image modeling. Traditional DL methods often transform higher-order tensors into vectors and then aggregate them into a matrix, which overlooks the inherent multi-dimensional structure of the data. To address this limitation, tensor-based DL approaches have been introduced. In this study, we present a novel tensor-based DL algorithm, CircWaveDL, for OCT classification, where both the training data and the dictionary are modeled as higher-order tensors. We named our approach CircWaveDL to reflect the use of CircWave atoms for dictionary initialization, rather than random initialization. CircWave has previously shown effectiveness in OCT classification, making it a fitting basis function for our DL method. The algorithm employs CANDECOMP/PARAFAC (CP) decomposition to factorize each tensor into lower dimensions. We then learn a sub-dictionary for each class using its respective training tensor. For testing, a test tensor is reconstructed with each sub-dictionary, and each test B-scan is assigned to the class that yields the minimal residual error. To evaluate the model's generalizability, we tested it across three distinct databases. Additionally, we introduce a new heatmap generation technique based on averaging the most significant atoms of the learned sub-dictionaries. This approach highlights that selecting an appropriate sub-dictionary for reconstructing test B-scans improves reconstructions, emphasizing the distinctive features of different classes. CircWaveDL demonstrated strong generalizability across external validation datasets, outperforming previous classification methods. It achieved accuracies of 92.5 %, 86.1 %, and 89.3 % on datasets 1, 2, and 3, respectively, showcasing its efficacy in OCT image classification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.artmed.2024.103060 | DOI Listing |
Mol Ther
January 2025
Department of Molecular Medicine, University of Southern Denmark; Odense, 5230, Denmark. Electronic address:
Neovascular age-related macular degeneration and diabetic macular edema are leading causes of vision-loss evoked by retinal neovascularization and vascular leakage. The glycoprotein microfibrillar-associated protein 4 (MFAP4) is an integrin αβ ligand present in the extracellular matrix. Single-cell transcriptomics reveal MFAP4 expression in cell-types in close proximity to vascular endothelial cells including choroidal vascular mural cells and retinal astrocytes and Müller cells.
View Article and Find Full Text PDFEur Arch Otorhinolaryngol
January 2025
ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 FenYang Road, Shanghai, 200031, China.
Background: Vocal fold leukoplakia (VFL), a precancerous lesion of the larynx, is characterized by white plaques on the vocal fold mucous membrane. Currently, there are no reliable biomarkers to predict the recurrence and malignant transformation of VFL. Considering chondroitin sulfate proteoglycan 4 (CSPG4) as a biomarker for malignant tumors such as laryngeal squamous cell carcinoma (LSCC), we conducted this cohort study to evaluate the prognostic influence of CSPG4 expression on VFL patients.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
In this study, biopolymer composites based on chitosan (CS) with enhanced optical properties were functionalized using Manganese metal complexes and black tea solution dyes. The results indicate that CS with Mn-complexes can produce polymer hybrids with high absorption, high refractive index and controlled optical band gaps, with a significant reduction from 6.24 eV to 1.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
The aberrant vascular response associated with tendon injury results in circulating immune cell infiltration and a chronic inflammatory feedback loop leading to poor healing outcomes. Studying this dysregulated tendon repair response in human pathophysiology has been historically challenging due to the reliance on animal models. To address this, our group developed the human tendon-on-a-chip (hToC) to model cellular interactions in the injured tendon microenvironment; however, this model lacked the key element of physiological flow in the vascular compartment.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Physics, Harvard University, Cambridge, MA, USA.
High-resolution fluorescence imaging of ultracold atoms and molecules is paramount to performing quantum simulation and computation in optical lattices and tweezers. Imaging durations in these experiments typically range from a millisecond to a second, significantly limiting the cycle time. In this work, we present fast, 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!