Sorghum is emerging as an ideal genetic model for designing high-biomass bioenergy crops. Biomass yield, a complex trait influenced by various plant architectural characteristics, is typically regulated by numerous genes. This study aimed to dissect the genetic regulators underlying fourteen plant architectural traits and ten biomass yield traits in the Sorghum Association Panel across two growing seasons. We identified 321 associated loci through genome-wide association studies (GWAS), involving 234,264 single nucleotide polymorphisms (SNPs). These loci include genes with known associations to biomass traits, such as 'maturity', 'dwarfing (Dw)', and 'leafbladeless1', as well as several uncharacterized loci not previously linked to these traits. We also identified 22 pleiotropic loci associated with variation in multiple phenotypes. Three of these loci, located on chromosomes 3 (S03_15463061), 6 (S06_42790178; Dw2), and 9 (S09_57005346; Dw1), exerted significant and consistent effects on multiple traits across both growing seasons. Additionally, we identified three genomic hotspots on chromosomes 6, 7, and 9, each containing multiple SNPs associated with variation in plant architecture and biomass yield traits. Chromosome-wise correlation analyses revealed multiple blocks of positively associated SNPs located near or within the same genomic regions. Finally, genome-wide correlation-based network analysis showed that loci associated with flowering, plant heights, leaf traits, plant density, and tiller number per plant were highly interconnected with other genetic loci influencing with plant architectural and biomass yield traits. The pyramiding of favorable alleles related to these traits holds promise for enhancing the future development of bioenergy sorghum crops.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jxb/eraf012 | DOI Listing |
Sci Rep
January 2025
Department of Biochemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia.
Nano-biochar considers a versatile and valuable sorbent to enhance plant productivity by improving soil environment and emerged as a novel solution for environmental remediation and sustainable agriculture in modern era. In this study, roles of foliar applied nanobiochar colloidal solution (NBS) on salt stressed tomato plants were investigated. For this purpose, NBS was applied (0%, 1% 3% and 5%) on two groups of plants (control 0 mM and salt stress 60 mM).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Chemical & Biotechnology, SASTRA Deemed University, Thirumalaisamudram, Tamil Nadu, India.
Levan is a fructan-type homopolysaccharide that has gained increasing attention due to its unique properties and promising applications. It is a fructose-based polymer produced through microbial fermentation by diverse microorganisms, including bacteria, yeasts and archaea. The ongoing research on levan mainly focuses on optimizing production processes, elucidating its biological functions, and uncover novel applications.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China. Electronic address:
Catalytic depolymerization is a favorable option for the valorization of industrial lignin. In this study, a new strategy was demonstrated for the efficient reductive depolymerization of industrial lignin based on a complex solvent of choline chloride-lactic acid (ChCl-LA) DES integrated with ethanol and a C-supported N-doped niobium-based catalyst with industrial lignin as carbon source (NBC@N-LC). It was found that the introduction of ethanol significantly improved the conversion of industrial lignin in ChCl-LA.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China. Electronic address:
Photosynthetic bacteria (PSB) excel in wastewater treatment by removing pollutants and generating biomass but are challenging to optimize due to complex operational and environmental interactions. Neural Ordinary Differential Equations, Elastic Net, Stacking, and Categorical Boosting were applied as artificial intelligence methods to predict chemical oxygen demand (COD) removal efficiency, biomass productivity, biomass yield, and energy yield. Among these, the Stacking model demonstrated superior predictive performance across all targets.
View Article and Find Full Text PDFEBioMedicine
January 2025
Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, New Cornerstone Science Foundation, Beijing, 100084, China. Electronic address:
Background: The widespread and evolution of RNA viruses, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), highlights the importance of fast identification of virus subtypes, particularly in non-laboratory settings. Rapid and inexpensive at-home testing of viral nucleic acids with single-base resolution remains a challenge.
Methods: Topologically constrained DNA ring is engineered as substrates for the trans-cleavage of Cas13a to yield an accelerated post isothermal amplification.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!