Through extensive research, nitroxyl (HNO) has emerged as a newly recognized redox signal in plant developmental and stress responses. The interplay between nitric oxide (●NO) and HNO entails a complex network of signaling molecules and regulatory elements sensitive to the environment's specific redox conditions. However, functional implications for HNO in cell signaling require more detailed studies, starting with identifying HNO-level switches. To obtain insight into possible physiologically relevant HNO modulators, we examined via real-time detection the HNO/●NO production triggered by selected plant-related compounds (PRCs), including non-protein amino acids, antioxidants, and phytohormones both in vitro and in vivo in the model plant Arabidopsis thaliana. Hydrogen sulfide, ascorbic acid, and salicylic acid were identified as superior PRCs in driving HNO/●NO interconversion in the cellular medium so that these PRCs could provide ubiquitous bioavailability of HNO in plants. Meanwhile, resistance-inducing compounds tended to downregulate HNO in Arabidopsis leaves. The present study indicates that non-enzymatic HNO/●NO interconversion mediated by functionally important PRCs constitutes a significant route for controlling endogenous HNO levels, providing ubiquitous HNO bioavailability in plant cells. Moreover, concurrent HNO/●NO monitoring shows that the redox signals are highly integrated and create a redox code that can be translated into a specific cell response.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erae494DOI Listing

Publication Analysis

Top Keywords

arabidopsis thaliana
8
hno
8
hno/●no interconversion
8
redox
5
searching nitroxyl
4
nitroxyl modulators
4
modulators arabidopsis
4
thaliana paradigm
4
paradigm redox
4
redox signaling
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!