Protocol to study inter-tissue communication between the hypothalamus and white adipose tissue and lifespan using a chemogenetic approach in aged mice.

STAR Protoc

Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA. Electronic address:

Published: January 2025

Here, we present a protocol for assessing the impact of a chemogenetic manipulation in a subpopulation of the hypothalamic neurons on aging and lifespan control using a mouse model developed specifically for this purpose. We describe steps for stereotaxic viral injection and assess inter-tissue communication between protein phosphatase 1 regulatory subunit 17 (Ppp1r17)-expressing neurons in the dorsomedial hypothalamus and white adipose tissue. We then detail procedures for lifespan measurements following chemogenetic manipulation in aged mice. For complete details on the use and execution of this protocol, please refer to Tokizane et al..

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xpro.2024.103551DOI Listing

Publication Analysis

Top Keywords

inter-tissue communication
8
hypothalamus white
8
white adipose
8
adipose tissue
8
aged mice
8
chemogenetic manipulation
8
protocol study
4
study inter-tissue
4
communication hypothalamus
4
tissue lifespan
4

Similar Publications

Here, we present a protocol for assessing the impact of a chemogenetic manipulation in a subpopulation of the hypothalamic neurons on aging and lifespan control using a mouse model developed specifically for this purpose. We describe steps for stereotaxic viral injection and assess inter-tissue communication between protein phosphatase 1 regulatory subunit 17 (Ppp1r17)-expressing neurons in the dorsomedial hypothalamus and white adipose tissue. We then detail procedures for lifespan measurements following chemogenetic manipulation in aged mice.

View Article and Find Full Text PDF

Osteonecrosis of femoral head (ONFH) is characterized not only by ischemic bone tissue necrosis but also by cartilage degeneration, which plays an essential role in the pathogenesis of ONFH. The molecular communication between tissues contributes to disease progression, however the communication between cartilage and subchondral bone in the progression of ONFH remains unclear. In this study, we integrated transcriptomic data from ONFH cartilage and subchondral bone, exploring common differentially expressed genes (DEGs), pathway and function enrichment analyses, the protein-protein interaction (PPI) network, and hub genes to comprehensively study molecular integration.

View Article and Find Full Text PDF

Turandot (Tot) family proteins, which are induced via the JAK/STAT pathway after infection, also suppress lymph gland tumors in mutant larvae. We investigated the potential role of hemocytes in induction in tumor-bearing mutants via immunostaining and RNAi experiments. Normal hemocytes transplanted into mutant larvae were recruited to the tumor and fat body (FB), suggesting that these cells transmit tumor-related information.

View Article and Find Full Text PDF

Cardiovascular disease (CVD) is a leading cause of mortality, affecting ∼18 million individuals each year. Obesity and type 2 diabetes mellitus in particular, both chronic metabolic disorders, are risk factors for CVD. The salutary effects of physical activity in preventing and ameliorating CVD have long been acknowledged, as it improves glucose and lipid homeostasis, alongside attenuating oxidative damage, increasing mitochondrial function, and ultimately improving cardiac function.

View Article and Find Full Text PDF

The abundance change of age-regulated secreted proteins affects lifespan of C. elegans.

Mech Ageing Dev

December 2024

School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175005, India. Electronic address:

Proteome integrity is vital for survival and failure to maintain it results in uncontrolled protein abundances, misfolding and aggregation which cause proteotoxicity. In multicellular organisms, proteotoxic stress is communicated among tissues to maintain proteome integrity for organismal stress resistance and survival. However, the nature of these signalling molecules and their regulation in extracellular space is largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!