Warfarin (WAR), an effective oral anticoagulant, is of utmost importance in treating many diseases. Despite its significance, rapid and precise discrimination of WAR remains a formidable challenge, especially facing its structural analogs of metabolites. Here, three kinds of herb-derived N-doped carbon dots (NCDs) were greenly synthesized via a fast and simple microwave-assisted method. Three NCDs showcased respectable blue fluorescent (FL) properties and sensing capabilities for the discrimination of WAR and its metabolites. To improve accuracy in identifying WAR and its metabolites, a sensor array composed of three unique herb-derived NCDs was meticulously designed. Combined with the machine learning model, the sensor array displayed a strong immunity to interference in the discrimination of the WAR, even in unknown samples. Meanwhile, the FL sensing mechanism is deeply expounded. The methodology proffers broad prospects for biomass-derived nanomaterials and provides an effective and feasible project for pharmaceutical analysis by capitalizing on machine learning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.4c03945 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!