Electrocatalytic dehalogenation is a promising method for the remediation of chlorinated organic pollutants. The dehalogenation performance is controlled by catalytic activity, and the underlying electrocatalytic dehalogenation mechanisms need to be carefully investigated for guiding the design of catalyst. Here we report the preparation of a new Pd-based catalyst with a nanosheet structure (Pd NS) by a simple wet-chemical reduction method. This Pd NS catalyst showed a superior electrocatalytic activity toward the reductive dehalogenation of a chlorinated organic pollutant (e.g., 4-chlorophenol) with the dehalogenation rate of 0.324 h. Importantly, the obtained Pd NS catalyst had a good durability that could operate well over 30 h under high concentration of 4-chlorophenol with removal efficiency beyond 82%. Experimental results confirmed the simultaneous occurrence of direct electrocatalytic dehalogenation and H*-mediated indirect electron transfer mechanisms in the dehalogenation process, and their quantitative contributions to the dehalogenation performance were established based on the cyclic voltammetry and quenching experiments. This study provides a promising dehalogenation catalyst and sheds light on the mechanism of electrocatalytic dehalogenation as well as the development of a dual-functional electrocatalyst.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c20944 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
Electrocatalytic dehalogenation is a promising method for the remediation of chlorinated organic pollutants. The dehalogenation performance is controlled by catalytic activity, and the underlying electrocatalytic dehalogenation mechanisms need to be carefully investigated for guiding the design of catalyst. Here we report the preparation of a new Pd-based catalyst with a nanosheet structure (Pd NS) by a simple wet-chemical reduction method.
View Article and Find Full Text PDFEnviron Res
July 2024
State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Tongji Advanced Membrane Technology Center, Shanghai, 200092, China. Electronic address:
Environ Sci Technol
February 2024
College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
The electrocatalytic hydrodehalogenation (EHDH) process mediated by atomic hydrogen (H*) is recognized as an efficient method for degrading halogenated organic pollutants (HOPs). However, a significant challenge is the excessive energy consumption resulting from the recombination of H* to H production in the EHDH process. In this study, a promising strategy was proposed to generate piezo-induced atomic H*, without external energy input or chemical consumption, for the degradation and dehalogenation of HOPs.
View Article and Find Full Text PDFEnviron Sci Technol
December 2023
State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China.
It is difficult to achieve deep dehalogenation or mineralization for halogenated antibiotics using traditional reduction or oxidation processes, posing the risk of microbial activity inhibition and bacterial resistance. Herein, an efficient electrocatalytic process coupling atomic hydrogen (H*) reduction with hydroxyl radical (•OH) oxidation on a bifunctional cathode catalyst is developed for the deep dehalogenation and mineralization of florfenicol (FLO). Atomically dispersed NiFe bimetallic catalyst on nitrogen-doped carbon as a bifunctional cathode catalyst can simultaneously generate H* and •OH through HO/H reduction and O reduction, respectively.
View Article and Find Full Text PDFACS Meas Sci Au
October 2023
Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States.
Electrochemical arrays promise utility for accelerated hypothesis testing and breakthrough discoveries. Herein, we report a new high-throughput electrochemistry platform, colloquially called "Legion," for applications in electroanalysis and electrosynthesis. Legion consists of 96 electrochemical cells dimensioned to match common 96-well plates that are independently controlled with a field-programmable gate array.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!