Human nails have recently become a sample of interest for toxicological purposes. Multiple studies have proven the ability to detect various analytes within the keratin matrix of the nail. The analyte of interest in this study is fentanyl, a highly dangerous and abused drug in recent decades. In this proof-of-concept study, ATR-FTIR was combined with machine learning methods, which are effective in detecting and differentiating fentanyl in samples, to explore whether nail samples are distinguishable from individuals who have used fentanyl and those who have not. PLS-DA and SVM-DA prediction models were created for this study and had an overall accuracy rate of 84.8% and 81.4%, respectively. Notably, when classification was considered at the donor level-i.e., determining whether the donor of the nail sample was using fentanyl-all donors were correctly classified. These results show that ATR-FTIR spectroscopy in combination with machine learning can effectively differentiate donors who have used fentanyl and those who have not and that human nails are a viable sample matrix for toxicology.

Download full-text PDF

Source
http://dx.doi.org/10.3390/s25010227DOI Listing

Publication Analysis

Top Keywords

human nails
12
machine learning
12
fentanyl human
8
fentanyl
5
spectra signatures
4
signatures detecting
4
detecting fentanyl
4
nails atr-ftir
4
atr-ftir machine
4
learning human
4

Similar Publications

Human nails have recently become a sample of interest for toxicological purposes. Multiple studies have proven the ability to detect various analytes within the keratin matrix of the nail. The analyte of interest in this study is fentanyl, a highly dangerous and abused drug in recent decades.

View Article and Find Full Text PDF

Purpose: The use of intramedullary fixation of AO type 31-A1 fractures is rising, despite evidence of non-superiority when compared with extramedullary fixation. The aim of this study was to evaluate mobility and living status for extramedullary fixation (EMF) versus intramedullary fixation (IMF) in Dutch hospitals during the initial hospital stay and until three-months after trauma.

Methods: Data on patient characteristics, mobility, living status, complications, reoperation, and mortality were extracted from the Dutch Hip Fracture Audit Indicator Taskforce.

View Article and Find Full Text PDF

Subtrochanteric fractures in older patients are typically due to low-energy falls. The standard of care is intramedullary nailing. The Smith & Nephew Trigen Intertan (Memphis, TN, US) is an intramedullary nail with a novel design that incorporates two integrated compression screws.

View Article and Find Full Text PDF

[Outcomes of Retrograde Femoral Nail Osteosynthesis of Intraarticular Fractures of the Distal Femur].

Acta Chir Orthop Traumatol Cech

January 2025

Klinika ortopedie a traumatologie pohybového ústrojí Fakultní nemocnice Plzeň.

Purpose Of The Study: Intraarticular fractures of the distal femur rank among the most severe musculoskeletal injuries. Various treatment options, such as plate osteosynthesis or retrograde nailing, can be employed. This study aims to evaluate the clinical outcomes and complications of intraarticular distal femoral fractures treated with retrograde femoral nail, with particular emphasis on C3 fractures.

View Article and Find Full Text PDF

In forensic investigations, human keratinized tissues like skin and nails are commonly encountered as trace evidence, yet the use of vibrational spectroscopy for their identification and differentiation has been underexplored. This research utilized ATR-FTIR to distinguish between human nails and skin samples collected from a group of 50 participants, employing advanced chemometric analysis techniques. The spectral signatures of human keratinized tissues, such as nails and skin, exhibit similarities consistent with previous studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!