Deep learning has performed well in feature extraction and pattern recognition and has been widely studied in the field of fault diagnosis. However, in practical engineering applications, the lack of sample size limits the potential of deep learning in fault diagnosis. Moreover, in engineering practice, it is usually necessary to obtain multidimensional fault information (such as fault localization and quantification), while current methods mostly only provide single-dimensional information. Aiming at the above problems, this paper proposes an Attention-based Multidimensional Fault Information Sharing (AMFIS) framework, which aims to overcome the difficulties of multidimensional bearing fault diagnosis in a small sample environment. Specifically, firstly, a shared network is designed to capture the common knowledge of the Fault Localization Task (FLT) and the Fault Quantification Task (FQT) and save it to the global feature pool. Secondly, two branching networks for performing FLT and FQT were constructed, and an attentional mechanism (AM) was used to filter out features from the shared network that were more relevant to the task to enhance the branching network's capability under small samples. Meanwhile, we propose an innovative Dynamic Adjustment Strategy (DAS) designed to adaptively regulate the training weights of FLT and FQT tasks to achieve optimal training results. Finally, extensive experiments are conducted in two cases to verify the effectiveness and superiority of AMFIS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/s25010224 | DOI Listing |
Sensors (Basel)
January 2025
School of Mechanical Engineering, Guizhou University, Guiyang 550028, China.
Deep learning has performed well in feature extraction and pattern recognition and has been widely studied in the field of fault diagnosis. However, in practical engineering applications, the lack of sample size limits the potential of deep learning in fault diagnosis. Moreover, in engineering practice, it is usually necessary to obtain multidimensional fault information (such as fault localization and quantification), while current methods mostly only provide single-dimensional information.
View Article and Find Full Text PDFSensors (Basel)
December 2024
College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China.
Photovoltaic arrays are exposed to outdoor conditions year-round, leading to degradation, cracks, open circuits, and other faults. Hence, the establishment of an effective fault diagnosis system for photovoltaic arrays is of paramount importance. However, existing fault diagnosis methods often trade off between high accuracy and localization.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan.
This paper proposes a hybrid algorithm combining the symmetrized dot pattern (SDP) method and a convolutional neural network (CNN) for fault detection in lithium battery modules. The study focuses on four fault types: overcharge, over-discharge, aging, and leakage caused by manual perforation. An 80.
View Article and Find Full Text PDFSensors (Basel)
December 2024
College of Intelligent Manufacturing and Industrial Modernization, Xinjiang University, Urumqi 830017, China.
This paper addresses the challenges of low accuracy and long transfer learning time in small-sample bearing fault diagnosis, which are often caused by limited samples, high noise levels, and poor feature extraction. We propose a method that combines an improved capsule network with a Siamese neural network. Multi-view data partitioning is used to enrich data diversity, and Markov transformation converts one-dimensional vibration signals into two-dimensional images, enhancing the visualization of signal features.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Instituto de Inovação Tecnológica-IIT, Universidade de Pernambuco-UPE R. Min. Mario Andreaza, s/n-Várzea, Recife 50950-050, PE, Brazil.
Integrating Machine Learning (ML) in industrial settings has become a cornerstone of Industry 4.0, aiming to enhance production system reliability and efficiency through Real-Time Fault Detection and Diagnosis (RT-FDD). This paper conducts a comprehensive literature review of ML-based RT-FDD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!