Unmanned aerial vehicles (UAVs) furnished with computational servers enable user equipment (UE) to offload complex computational tasks, thereby addressing the limitations of edge computing in remote or resource-constrained environments. The application of value decomposition algorithms for UAV trajectory planning has drawn considerable research attention. However, existing value decomposition algorithms commonly encounter obstacles in effectively associating local observations with the global state of UAV clusters, which hinders their task-solving capabilities and gives rise to reduced task completion rates and prolonged convergence times. To address these challenges, this paper introduces an innovative multi-agent deep learning framework that conceptualizes multi-UAV trajectory optimization as a decentralized partially observable Markov decision process (Dec-POMDP). This framework integrates the QTRAN algorithm with a large language model (LLM) for efficient region decomposition and employs graph convolutional networks (GCNs) combined with self-attention mechanisms to adeptly manage inter-subregion relationships. The simulation results demonstrate that the proposed method significantly outperforms existing deep reinforcement learning methods, with improvements in convergence speed and task completion rate exceeding 10%. Overall, this framework significantly advances UAV trajectory optimization and enhances the performance of multi-agent systems within UAV-assisted edge computing environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/s25010175 | DOI Listing |
Sensors (Basel)
January 2025
Department of Computer Science, Tunghai University, Taichung City 407224, Taiwan.
This paper addresses the increasing demand for efficient and scalable streaming service applications within the context of edge computing, utilizing NVIDIA Jetson Xavier NX hardware and Docker. The study evaluates the performance of DeepStream and Simple Realtime Server, demonstrating that containerized applications can achieve performance levels comparable to traditional physical machines. The results indicate that WebRTC provides superior low-latency capabilities, achieving delays of around 5 s, while HLS typically experiences delays exceeding 10 s.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Computer Science and Systems Engineering, Faculty of Information and Communication Technology, Wrocław University of Science and Technology, 50-370 Wrocław, Poland.
The distributed nature of IoT systems and new trends focusing on fog computing enforce the need for reliable communication that ensures the required quality of service for various scenarios. Due to the direct interaction with the real world, failure to deliver the required QoS level can introduce system failures and lead to further negative consequences for users. This paper introduces a prediction-based resource allocation method for Multi-Access Edge Computing-capable networks, aimed at assurance of the required QoS and optimization of resource utilization for various types of IoT use cases featuring adaptability to changes in users' requests.
View Article and Find Full Text PDFSensors (Basel)
January 2025
National Key Laboratory of Multispectral Information Intelligent Processing Technology, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430000, China.
Despite rapid progress in UAV-based infrared vehicle detection, achieving reliable target recognition remains challenging due to dynamic viewpoint variations and platform instability. The inherent limitations of infrared imaging, particularly low contrast ratios and thermal crossover effects, significantly compromise detection accuracy. Moreover, the computational constraints of edge computing platforms pose a fundamental challenge in balancing real-time processing requirements with detection performance.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Computer Science and Engineering, Yanbu Industrial College, Royal Commission for Jubail and Yanbu, Yanbu Industrial City 41912, Saudi Arabia.
This paper provides the complete details of current challenges and solutions in the cybersecurity of cyber-physical systems (CPS) within the context of the IIoT and its integration with edge computing (IIoT-edge computing). We systematically collected and analyzed the relevant literature from the past five years, applying a rigorous methodology to identify key sources. Our study highlights the prevalent IIoT layer attacks, common intrusion methods, and critical threats facing IIoT-edge computing environments.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Institute of Applied Informatics, Automation and Mechatronics, Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, 812 43 Bratislava, Slovakia.
The core of this publication is the design of a system for evaluating the condition of production equipment and machines by monitoring selected parameters of the production process with an additional sensor subsystem. The main positive of the design is the processing of data from the sensor layer using artificial intelligence (AI) and expert systems (ESs) with the use of edge computing (EC). Sensor information is processed directly at the sensor level on the monitored equipment, and the results of the individual subsystems are stored in the form of triggers in a database for use in the predictive maintenance process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!