With the increasing complexity of urban roads and rising traffic flow, traffic safety has become a critical societal concern. Current research primarily addresses drivers' attention, reaction speed, and perceptual abilities, but comprehensive assessments of cognitive abilities in complex traffic environments are lacking. This study, grounded in cognitive science and neuropsychology, identifies and quantitatively evaluates ten cognitive components related to driving decision-making, execution, and psychological states by analyzing video footage of drivers' actions. Physiological data (e.g., Electrocardiogram (ECG), Electrodermal Activity (EDA)) and non-physiological data (e.g., Eye Tracking (ET)) are collected from simulated driving scenarios. A dual-branch Transformer network model is developed to extract temporal features from multimodal data, integrating these features through a weight adjustment strategy to predict driving-related cognitive abilities. Experiments on a multimodal driving dataset from the Computational Physiology Laboratory at the University of Houston, USA, yield an Accuracy (ACC) of 0.9908 and an F1-score of 0.9832, confirming the model's effectiveness. This method effectively combines scale measurements and driving behavior under secondary tasks to assess cognitive abilities, providing a novel approach for driving risk assessment and traffic safety strategy development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/s25010174 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!