Software-defined networking (SDN) offers an effective solution for flexible management of Wireless Sensor Networks (WSNs) by separating control logic from sensor nodes. This paper tackles the challenge of timely recovery from SDN controller failures and proposes a game theoretic model for multi-domain controllers. A game-enhanced autonomous fault recovery algorithm for SDN controllers is proposed, which boasts fast fault recovery and low migration costs. Taking into account the remaining capacity of controllers and the transition relationships between devices, the target controller is first selected to establish a controller game domain. The issue of mapping the out-of-control switches within the controller game domain to the target controller is transformed into a linear programming problem for solution. A multi-population particle swarm optimization algorithm with repulsive interaction is employed to iteratively evolve the optimal mapping between controllers and switches. Finally, migration tasks are executed based on the optimal mapping results, and the role transition of the target controller is completed. Comparative experimental results demonstrate that, compared to existing SDN controller fault recovery algorithms, the proposed algorithm can balance the migration cost of switches and the load pressure on controllers while reducing propagation delay in SDN controllers, significantly decreasing the fault recovery time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/s25010164 | DOI Listing |
Sensors (Basel)
December 2024
The College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
Software-defined networking (SDN) offers an effective solution for flexible management of Wireless Sensor Networks (WSNs) by separating control logic from sensor nodes. This paper tackles the challenge of timely recovery from SDN controller failures and proposes a game theoretic model for multi-domain controllers. A game-enhanced autonomous fault recovery algorithm for SDN controllers is proposed, which boasts fast fault recovery and low migration costs.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University of Cluj-Napoca, 11 Arany János Street, 400028, Cluj-Napoca, Romania.
One of the leading challenges in Water Resource Recovery Facility monitoring and control is the poor data quality and sensor consistency due to the tough and complex circumstances of the process operation. This paper presents a new principal component analysis fault detection approach for the nitrate and nitrite concentration sensor based on Water Resource Recovery Facility measurements, together with the Fisher Discriminant Analysis identification of fault types. Five malfunction cases were considered: constant additive error, ramp changing error in time, incorrect amplification error, random additive error, and unchanging sensor value error.
View Article and Find Full Text PDFISA Trans
December 2024
Department of Mathematics, Deshbandhu College, University of Delhi, New Delhi 110019, India. Electronic address:
Redundancy and maintainability-supported fault-tolerant machining systems are used in many industries to achieve pre-specified reliability and system capability. In this investigation, a non-Markov model for the machining system has been developed by involving the concepts of server vacation, server breakdown, and reboot process. The server may fail and undergo primary repair which may be unsuccessful in recovering the server.
View Article and Find Full Text PDFNat Commun
November 2024
Department of Earth Sciences, Sapienza University of Rome, Rome, Italy.
We use seismic waves that pass through the hypocentral region of the 2016 M6.5 Norcia earthquake together with Deep Learning (DL) to distinguish between foreshocks, aftershocks and time-to-failure (TTF). Binary and N-class models defined by TTF correctly identify seismograms in test with > 90% accuracy.
View Article and Find Full Text PDFHeliyon
November 2024
Department of Petroleum and Mining Engineering, Military Institute of Science and Technology (MIST), Dhaka-1216, Bangladesh.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!