Photovoltaic arrays are exposed to outdoor conditions year-round, leading to degradation, cracks, open circuits, and other faults. Hence, the establishment of an effective fault diagnosis system for photovoltaic arrays is of paramount importance. However, existing fault diagnosis methods often trade off between high accuracy and localization. To address this concern, this paper proposes a fault identification and localization approach for photovoltaic arrays based on modulated photocurrent and machine learning. By irradiating different frequency-modulated light, this method separates photocurrent and directly measures the photoelectric conversion efficiency of each panel, achieving both high accuracy and localization. Through machine learning classification algorithms, the current amplitude and frequency of each photovoltaic panel are identified to achieve fault identification and localization. Compared to other methods, the strengths of this method lie in its ability to achieve high-speed and high-accuracy fault identification and localization by measuring only the short-circuit current. Additionally, the equipment cost is low. The feasibility of the proposed method is demonstrated through practical experimentation. It is determined that when utilizing a neural network algorithm, the fault identification speed meets measurement requirements (5800 obs/s), and the fault diagnosis accuracy is optimal (97.8%).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11723431 | PMC |
http://dx.doi.org/10.3390/s25010136 | DOI Listing |
Sensors (Basel)
January 2025
Hubei Key Laboratory of Power Equipment & System Security for Integrated Energy, School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China.
High-voltage (HV) cables are increasingly used in urban power grids, and their safe operation is critical to grid stability. Previous studies have analyzed various defects, including the open circuit in the sheath loop, the flooding in the cross-bonded link box, and the sheath grounding fault. However, there is a paucity of research on the defect of the reverse direction between the inner core and the outer shield of the coaxial cable.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Heime (Tianjin) Electrical Engineering Systems Co., Ltd., Tianjin 301700, China.
This paper introduces a novel geometry-based synchrosqueezing S-transform (GSSST) for advanced gearbox fault diagnosis, designed to enhance diagnostic precision in both planetary and parallel gearboxes. Traditional time-frequency analysis (TFA) methods, such as the Synchrosqueezing S-transform (SSST), often face challenges in accurately representing fault-related features when significant mode closely spaced components are present. The proposed GSSST method overcomes these limitations by implementing an intuitive geometric reassignment framework, which reassigns time-frequency (TF) coefficients to maximize energy concentration, thereby allowing fault components to be distinctly isolated even under challenging conditions.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Institute for Energy Engineering, Universitat Politècnica de València, Camino. de Vera s/n, 46022 Valencia, Spain.
Induction motors are essential components in industry due to their efficiency and cost-effectiveness. This study presents an innovative methodology for automatic fault detection by analyzing images generated from the Fourier spectra of current signals using deep learning techniques. A new preprocessing technique incorporating a distinctive background to enhance spectral feature learning is proposed, enabling the detection of four types of faults: healthy motor coupled to a generator with a broken bar (HGB), broken rotor bar (BRB), race bearing fault (RBF), and bearing ball fault (BBF).
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, China.
This study proposes a novel rolling bearing fault diagnosis technique based on a synchrosqueezing wavelet transform (SWT) and a transfer residual convolutional neural network (TRCNN) designed to address the difficulties of feature extraction caused by the non-stationarity of fault signals, as well as the issue of low fault diagnosis accuracy resulting from small sample quantities. This approach transforms the one-dimensional vibration signal into time-frequency diagrams using an SWT based on complex Morlet wavelet basis functions, which redistributes (squeezes) the values of the wavelet coefficients at different localized points in a time-frequency plane to the estimated instantaneous frequencies. This allows the energy to be more fully concentrated in actual corresponding frequency components.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
Beijing Institute of Space Launch Technology, Beijing 100076, China.
When using a fiber optic gyroscope as the core measurement element in an inertial navigation system, its work stability and reliability directly affect the accuracy of the navigation system. The modeling and fault diagnosis of the gyroscope is of great significance in ensuring the high accuracy and long endurance of the inertial system. Traditional diagnostic models often encounter challenges in terms of reliability and accuracy, for example, difficulties in feature extraction, high computational cost, and long training time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!