In the current era of advanced IoT technology, human occupancy monitoring and positioning technology is widely used in various scenarios. For example, it can optimize passenger flow in public transportation systems, enhance safety in large shopping malls, and adjust smart home devices based on the location and number of occupants for energy savings. Additionally, in homes requiring special care, it can provide timely assistance. However, this technology faces limitations such as privacy concerns, environmental factors, and costs. Traditional cameras may not effectively address these issues, but infrared thermal sensors can offer similar applications while overcoming these challenges. Infrared thermal sensors detect the infrared heat emitted by the human body, protecting privacy and functioning effectively day and night with low power consumption, making them ideal for continuous monitoring scenarios like security systems or elderly care. In this study, we propose a system using the AMG8833, an 8 × 8 Infrared Thermal Array Sensor. The sensor data are processed through interpolation, adaptive thresholding, and blob detection, and the merged human heat signatures are separated. To enhance stability in human position estimation, a dynamic sliding window adjusts its size based on movement speed, effectively handling environmental changes and uncertainties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/s25010129 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!