The major task of a wireless sensor network (WSN) is data collection. Key predistribution (KP) is to establish pairwise keys for secure communication in a WSN, such that all collected data could be securely sent to a backend database. Most research on KP-like schemes is dedicated to enhancing resiliency against node capture attack (NA) and retaining the link connectivity in the meantime. For large-scale wireless sensor networks, a more common approach is to use a multiple-sink WSN (MWSN) to support a large number of sensor nodes. In MWSNs, there are different clusters (referred to as groups). We took the lead in studying KP in the MWSN environment. Based on the new MWSN environment, we present intragroup and intergroup KP (IKP) to fulfill both requirements of security and energy efficiency when gathering data via various sink nodes in a large-scale WSN. Three types of IKP with respective pros and cons are proposed. Theoretical analysis and numerical simulation demonstrate their effectiveness.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11723085 | PMC |
http://dx.doi.org/10.3390/s25010086 | DOI Listing |
Sensors (Basel)
January 2025
Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea.
This study presents the fabrication of a sustainable flexible humidity sensor utilizing chitosan derived from mealworm biomass as the primary sensing material. The chitosan-based humidity sensor was fabricated by casting chitosan and polyvinyl alcohol (PVA) films with interdigitated copper electrodes, forming a laminate composite suitable for real-time, resistive-type humidity detection. Comprehensive characterization of the chitosan film was performed using Fourier-transform infrared (FTIR) spectroscopy, contact angle measurements, and tensile testing, which confirmed its chemical structure, wettability, and mechanical stability.
View Article and Find Full Text PDFSensors (Basel)
January 2025
State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
As advancements in autonomous underwater vehicle (AUV) technology unfold, the role of underwater wireless sensor networks (UWSNs) is becoming increasingly pivotal. However, the high energy consumption in these networks can significantly reduce their operational lifespan, while latency issues can impair overall network performance. To address these challenges, a novel mixed packet forwarding strategy is developed, which incorporates a wakeup threshold and a dynamically adjusted access probability for the cluster head (CH).
View Article and Find Full Text PDFSensors (Basel)
January 2025
Institute of Telecommunications, Faculty of Computer Science, Electronics and Telecommunications, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland.
The currently observed development of time-sensitive applications also affects wireless communication with the IoT carried by UAVs. Although research on wireless low-latency networks has matured, there are still issues to solve at the transport layer. Since there is a general agreement that classical transport solutions are not able to achieve end-to-end delays in the single-digit millisecond range, in this paper, the use of WebRTC is proposed as a potential solution to this problem.
View Article and Find Full Text PDFSensors (Basel)
January 2025
College of Computer, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
Gesture recognition technology based on millimeter-wave radar can recognize and classify user gestures in non-contact scenarios. To address the complexity of data processing with multi-feature inputs in neural networks and the poor recognition performance with single-feature inputs, this paper proposes a gesture recognition algorithm based on esNet ong Short-Term Memory with an ttention Mechanism (RLA). In the aspect of signal processing in RLA, a range-Doppler map is obtained through the extraction of the range and velocity features in the original mmWave radar signal.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu 611731, China.
Target detection is a core function of integrated sensing and communication (ISAC) systems. The traditional likelihood ratio test (LRT) target detection algorithm performs inadequately under low signal-to-noise ratio (SNR) conditions, and the performance of mainstream orthogonal frequency division multiplexing (OFDM) waveforms declines sharply in high-speed scenarios. To address these issues, an information-theory-based orthogonal time frequency space (OTFS)-ISAC target detection processing framework is proposed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!