This study aimed to predict and fit the nonlinear dynamic grip force of the human upper limb using surface electromyographic (sEMG) signals. The research employed a time-series-based neural network, NARX, to establish a mapping relationship between the electromyographic signals of the forearm muscle groups and dynamic grip force. Three-channel electromyographic signal acquisition equipment and a grip force sensor were used to record muscle signals and grip force data of the subjects under specific dynamic force conditions. After preprocessing the data, including outlier removal, wavelet denoising, and baseline drift correction, the NARX model was used for fitting analysis. The model compares two different training strategies: regularized stochastic gradient descent (BRSGD) and conjugate gradient (CG). The results show that the CG greatly shortened the training time, and performance did not decline. NARX demonstrated good accuracy and stability in dynamic grip force prediction, with the model with 10 layers and 20 time delays performing the best. The results demonstrate that the proposed method has potential practical significance for force control applications in smart prosthetics and virtual reality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/s25010013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!