Preclinical Models for Functional Precision Lung Cancer Research.

Cancers (Basel)

Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA.

Published: December 2024

Patient-centered precision oncology strives to deliver individualized cancer care. In lung cancer, preclinical models and technological innovations have become critical in advancing this approach. Preclinical models enable deeper insights into tumor biology and enhance the selection of appropriate systemic therapies across chemotherapy, targeted therapies, immunotherapies, antibody-drug conjugates, and emerging investigational treatments. While traditional human lung cancer cell lines offer a basic framework for cancer research, they often lack the tumor heterogeneity and intricate tumor-stromal interactions necessary to accurately predict patient-specific clinical outcomes. Patient-derived xenografts (PDXs), however, retain the original tumor's histopathology and genetic features, providing a more reliable model for predicting responses to systemic therapeutics, especially molecularly targeted therapies. For studying immunotherapies and antibody-drug conjugates, humanized PDX mouse models, syngeneic mouse models, and genetically engineered mouse models (GEMMs) are increasingly utilized. Despite their value, these in vivo models are costly, labor-intensive, and time-consuming. Recently, patient-derived lung cancer organoids (LCOs) have emerged as a promising in vitro tool for functional precision oncology studies. These LCOs demonstrate high success rates in growth and maintenance, accurately represent the histology and genomics of the original tumors and exhibit strong correlations with clinical treatment responses. Further supported by advancements in imaging, spatial and single-cell transcriptomics, proteomics, and artificial intelligence, these preclinical models are reshaping the landscape of drug development and functional precision lung cancer research. This integrated approach holds the potential to deliver increasingly accurate, personalized treatment strategies, ultimately enhancing patient outcomes in lung cancer.

Download full-text PDF

Source
http://dx.doi.org/10.3390/cancers17010022DOI Listing

Publication Analysis

Top Keywords

lung cancer
24
preclinical models
16
functional precision
12
mouse models
12
precision lung
8
cancer
8
precision oncology
8
targeted therapies
8
immunotherapies antibody-drug
8
antibody-drug conjugates
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!